基于非牛顿流体新型液浮法抛光技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Novel liquid float polishing technology based on non-Newtonian fluid
  • 作者:秦琳 ; 弥谦 ; 李宏
  • 英文作者:QIN Lin;MI Qian;LI Hong;Shaanxi Optical Advanced Manufacturing Engineering Technology Research Center,Xi'an Technological University;
  • 关键词:光学元件加工 ; 液浮抛光技术 ; 剪切增稠 ; fluent流场分析
  • 英文关键词:optical component processing;;liquid float polishing technology;;shear thickening;;fluent flow field analysis
  • 中文刊名:YYGX
  • 英文刊名:Journal of Applied Optics
  • 机构:西安工业大学陕西省光学先进制造工程技术研究中心;
  • 出版日期:2019-03-15
  • 出版单位:应用光学
  • 年:2019
  • 期:v.40;No.232
  • 基金:装备发展部共用技术项目(41423020111);; 陕西省自然科学基础研究计划项目(2018JM6031);; 陕西省教育厅重点实验室科研计划项目(18JS052);; 陕西省科技厅重点研发计划项目
  • 语种:中文;
  • 页:YYGX201902007
  • 页数:6
  • CN:02
  • ISSN:61-1171/O4
  • 分类号:52-57
摘要
提出一种新的柔性抛光技术——液浮法抛光,通过软件仿真及实验对其进行探索性研究。针对抛光液为具有剪切增稠效应的流体,利用软件对该类液体的液浮法抛光技术模型进行流场分析,得到液浮抛光模型的流场压强、剪切力分布情况。仿真结果表明,液浮抛光技术对被加工件表面具有一定的剪切效果,可以实现对工件材料的去除。搭建实验平台,设计一组实验,其中配置以粒径12nm的二氧化硅为溶质,分子量200的聚乙二醇为溶剂的非牛顿幂律流体作为抛光液的剪切增稠基液(其中二氧化硅质量分数为9%),加入质量分数为18%的氧化铈作为磨料的抛光液,对于初始粗糙度为23.97nm的K9玻璃经过90min的抛光,其粗糙度可达到1.023nm,实验结果表明,该技术可用于光学元件的抛光加工。
        A novel flexible liquid float polishing technique was presented through software simulation and experiment.Firstly,the fluent software was employed to analyze the flow field of the liquid float polishing model which had shear thickening effect.The flow field pressure and shear force distribution of the liquid float polishing model were obtained.The simulation results show that the liquid float polishing technology has certain shearing effect on the surface of the workpiece,and the workpiece material can be removed effectively.Then,an experimental platform was established to verify the simulation results.A kind of polishing solution based on non-Newtonian power law fluid was prepared which composed of SiO2(particle size 12 nm)served as solvend,polyethylene glycol(molecular weight of 200)served as solvent,and the cerium oxide with a mass fraction of 18%is also added as the abrasive.The surface roughness of K9 glass can be effectively reduced from 23.97 nm to 1.023 nm after 90 min polishing by using the novel flexible liquid float polishing technique.The experimental results show that this technology can be used for the processing of optical components.
引文
[1]YUAN Julong,WANG Zhiwei,WEN Donghui,et al.Summary of the status quo of ultra-precision machining[J].Chinese Journal of Mechanical Engineering,2007(01):35-48.袁巨龙,王志伟,文东辉,等.超精密加工现状综述[J].机械工程学报,2007(01):35-48.
    [2]PENG Jin,XIA Lin,ZOU Wenjun.Research status and prospect of chemical mechanical polishing slurry[J].Surface Technology,2012,41(2):78-81.彭进,夏琳,邹文俊.化学机械抛光液的发展现状与研究方向[J].表面技术,2012,41(2):78-81.
    [3]KIM S,SAKA N,CHUN J H,et al.Modeling and mitigation of pad scratching in chemical-mechanical polishing[J].CIRP Annals Manufacturing Technology,2013,62(1):307-310.
    [4]XU Xingqin.Study of behaviour of particle group movement in elastic[D].Dalian:Dalian University of Technology,2013.徐兴芹.弹性发射加工中磨粒群运动特性的研究[D].大连:大连理工大学,2013.
    [5]SHA Shujing,HU Jinfei,ZHANG Hequan.New progress of magnetorheological finishing[J].Mechanical Engineer,2018,1(7):5-8.沙树静,胡锦飞,张和权.磁流变抛光技术发展[J].机械工程师,2018,1(7):5-8.
    [6]YAN Qiusheng,XU Peijie,LU Jiabin,et al.Stability of colloidal silica polishing solution and its effect on SiC chemical mechanical polishing[J].Semiconductor Technology,2018,43(9):664-668.阎秋生,徐沛杰,路家斌,等.硅溶胶抛光液稳定性及对SiC化学机械抛光的影响[J].半导体技术,2018,43(9):664-668.
    [7]WANG Wenbo.Design of large aperture rapid polishing machine and research of its relative issues[D].Hernan:Zhongyuan University of Technology,2015.王文博.大口径快速抛光机设计与相关问题研究[D].河南:中原工学院,2015.
    [8]DAI Weitao,LV Binghai,WENG Haizhou,et al.Optimization experiment of acoustic assisted shear thickening polishing of cylindrical surface[J].Surface Technology,2016,45(2):188-193.戴伟涛,吕冰海,翁海舟,等.圆柱表面声波辅助剪切增稠抛光优化实验研究[J].表面技术,2016,45(2):188-193.
    [9]LI Min,YUAN Julong.Fundamental research on shear-thickening polishing method[J].Hunan:Hunan University,2015.李敏,袁巨龙.剪切增稠抛光方法的基础研究[D].湖南:湖南大学,2015.
    [10]WENG Haizhou,LV Binghai,HU Gangxiang,et al.Optimization experiment of shear thickening polishing of quartz substrates[J].Nanotechnology and Precision Engineering,2017,15(3):227-233.翁海舟,吕冰海,胡刚翔,等.石英晶片剪切增稠抛光优化实验[J].纳米技术与精密工程,2017,15(3):227-233.
    [11]LI M,LYU B,YUAN J,et al.Shear-thickening polishing method[J].International Journal of Machine Tools&Man-ufacture,2015,94:88-99.
    [12]WAGNER N J,BRADY J F.Shear thickening in colloidal dispersions[J].Physics Today,2009,62(10):27-32.
    [13]LI Min,YUAN Julong,LV Binghai.Preparation of shear thickening polishing abrasive slurries and their polishing properties[J].Editorial Office of Optics and Precision Engineering,2015,23(9):2513-2521.李敏,袁巨龙,吕冰海.剪切增稠抛光磨料液的制备及其抛光特性[J].光学精密工程,2015,23(9):2513-2521.
    [14]TANG Jiapeng.ANSYS FLUENT 16.0super learning manual[M].Beijing:Peoples Posts and Telecommunications Press,2016.唐家鹏.ANSYS FLUENT 16.0超级学习手册[M].北京:人民邮电出版社,2016.
    [15]ZHANG Zixiong,DONG Zengnan.Viscous fluid mechanics[M].Beijing:Tsinghua University Press,2011.章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,2011.
    [16]LIU Jiani.Measurement and evaluation of surface profile parameters of planar optical elements[D].Xian:Xian Institute of Technology,2018.刘佳妮.平面光学元件表面面形参数测量评价研究[D].西安:西安工业大学,2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700