贝塞尔-高斯涡旋光束相干合成研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Generation of Bessel-Gaussian vortex beam by combining technology
  • 作者:于涛 ; 夏辉 ; 樊志华 ; 谢文科 ; 张盼 ; 刘俊圣 ; 陈欣
  • 英文作者:Yu Tao;Xia Hui;Fan Zhi-Hua;Xie Wen-Ke;Zhang Pan;Liu Jun-Sheng;Chen Xin;School of Physics and Electronics, Central South University;Shanghai Aerospace Control Technology Institute;Infrared Detection Technology Research and Development Center of CASC;
  • 关键词:涡旋光束 ; 相干合成技术 ; 桶中功率 ; 拓扑荷
  • 英文关键词:vortex beam;;coherent combing technology;;power-in-the-bucket;;topological charges
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中南大学物理与电子学院;上海航天控制技术研究所;中国航天科技集团公司红外探测技术研发中心;
  • 出版日期:2018-06-15 08:37
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:装备预研领域基金(编号:6140415020311);; 高能激光技术湖南省重点实验室开放基金(编号:GNJGJS04)资助的课题~~
  • 语种:中文;
  • 页:WLXB201813024
  • 页数:8
  • CN:13
  • ISSN:11-1958/O4
  • 分类号:316-323
摘要
基于相干合成技术,提出了对特定离散空间分布的高斯光束阵列加载离散涡旋相位生成二阶贝塞尔-高斯(Bessel-Gaussian,BG)涡旋光束的方案.利用干涉法、桶中功率和相关系数对合成BG涡旋光束的拓扑荷、光束质量进行了定量评价及参数优化.结果表明:基于相干合成技术能够产生特定的目标BG涡旋光束,阵列子光束紧密排布时合成BG光束的光束质量更高.该方法的提出对于其他涡旋光束的产生或者涡旋光束功率的提高具有一定的参考意义.
        Bessel beam is an important member of the family of non-diffracting beams and has some unique properties which can be used in many areas, such as micro particle manipulating, material processing and optical communication. However,the source of Bessel beam generated by the existing methods can be used only in a short distance due to its low power. In this paper, according to the coherent combining technology, we propose a method to generate a second-order Bessel-Gaussian(BG) beam by loading discrete vortex phase on specific spatially distributed Gaussian beam array.The coherent combining technology can enhance the output power by increasing the number of beams and use the phase-locking technique to maintain the beam quality. The experimental scheme is described as follows. The expanded Gaussian beam is first split by an amplitude-based spatial light modulator, then the Gaussian beam array is incident on a phase-only spatial light modulator to load the discrete vortex phase, and finally the Gaussian beam array loaded with phase can synthesize BG beam in free space. Due to the diffraction effect of the sub-beams, the optical field distribution between the adjacent sub-beams which are loaded with phase differences, are superimposed. As a result, the optical field distribution of the approximate beam can be obtained by coherent synthesis in free space. After that, the degree of similarity between simulated results and theoretical data is analyzed by correlation coefficient, including the comparison of light intensity between experiment and simulation, and the power-in-the-bucket is used to evaluate beam quality. In addition, the topological charge of the synthesized BG beams is verified by the interference method. By studying the number of beams, the waist radius and the radius of the ring, we find some interesting results which are summarized as follows. Firstly, the closed arrangement of Gaussian beam arrays can improve the quality of the synthesized BG beam. Secondly, the smaller the phase difference between the sub-beams, the more easily the discontinuous piston phase approaches to the vortex phase. Therefore, increasing the number of sub-beams can significantly improve the beam quality of the synthesized BG beam and obtain a higher order synthetic BG beam. Finally, we define the parameter k to represent the tightness of a circular array of Gaussian beams. The present study shows that when the parameter k is close to 1, the best experimental results can be obtained. Therefore, the proposed method has important guidance in generating various vortex beams or enhancing the vortex beam power.
引文
[1]Yin J P,Liu N C,Xia Y,Yun M 2004 Prog.Phys.24336(in Chinese)[印建平,刘南春,夏勇,恽旻2004物理学进展24 336]
    [2]Shu W X,Ke Y G,Liu Y C,Ling X H,Luo H L,Yin X B 2016 Phys.Rev.A 93 013839
    [3]Liu Y C,Ke Y G,Zhou J X,Liu Y Y,Luo H L,Wen S C,Fan D Y 2017 Sci.Rep.7 44096
    [4]Liu Z X,Liu Y Y,Ke Y G,Liu Y C,Shu W X,Luo H L,Wen S C 2017 Photon.Res.5 15
    [5]Allegre O J,Jin Y,Perrie W,Ouyang J,Fearon E,Edwardson S P,Dearden G 2013 Opt.Express 21 21198
    [6]Yan Y,Xie G D,Lavery M P J,Huang H,Ahmed N,Bao C J,Ren Y X,Cao Y W,Li L,Zhao Z,Molish F,Tur M,Padgett M J,Willner A E 2014 Nat.Commun.5 4876
    [7]Liu Y D,Gao C Q,Gao M W,Li F 2007 Acta Phys.Sin.56 854(in Chinese)[刘义东,高春清,高明伟,李丰2007物理学报56 854]
    [8]Padgett M,Bowman R 2011 Nature Photon.5 343
    [9]He Y L,Liu Z X,Liu Y C,Zhou J X,Ke Y G,Luo H L,Wen S C 2015 Opt.Lett.40 5506
    [10]Ngcobo S,A?tameur K,Passilly N,Hasnaoui A,Forbes A 2013 Appl.Opt.52 2093
    [11]Lin D,Daniel J M O,Clarkson W A 2014 Opt.Lett.393903
    [12]Kim D J,Kim J W,Clarkson W A 2014 Appl.Phys.B117 459
    [13]Li Y,Li W,Zhang Z,Miller K,Shori R 2016 Opt.Express 24 1658
    [14]Liu Z J,Zhou P,Hou J,Xu X J 2009 Chin.J.Lasers36 518(in Chinese)[刘泽金,周朴,侯静,许晓军2009中国激光36 518]
    [15]Chu X X,Liu Z J,Zhou P 2013 Laser Phys.Lett.105102
    [16]Zhu K C,Tang H Q,Sun X M,Wang X W,Liu T N2002 Opt.Commun.207 29
    [17]Zhu K C,Tang H Q,Wang X W,Liu T N 2002 Optik113 222
    [18]Zhu K C,Zhou G Q,Li X G,Zheng X J,Tang H Q 2008Opt.Express 16 21315
    [19]Chu X X,Sun Q,Wang J,Lu P,Xie W K,Xu X J 2015Sci.Rep.5 18665
    [20]Feng G Y,Zhou S H 2009 Chin.J.Lasers 36 1643(in Chinese)[冯国英,周寿桓2009中国激光36 1643]
    [21]Wang Q M 2008 M.S.Dissertation(Hangzhou:Zhejiang University)(in Chinese)[王启明2008硕士学位论文(杭州:浙江大学)]
    [22]Li Y Y,Chen Z Y,Liu H,Pu J X 2010 Acta Phys.Sin.59 1740(in Chinese)[李阳月,陈子阳,刘辉,蒲继雄2010物理学报59 1740]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700