光纤端面集成金属光子结构传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sensors Based on Metallic Photonic Structures Integrated onto End Facets of Fibers
  • 作者:刘飞飞 ; 张新平
  • 英文作者:Liu Feifei;Zhang Xinping;Institute of Information Photonics Technology,College of Applied Sciences,Beijing University of Technology;
  • 关键词:光纤光学 ; 金属光子晶体 ; 光纤端面 ; 集成化传感器 ; 表面等离激元共振 ; 局域化表面等离激元共振 ; 表面增强拉曼散射
  • 英文关键词:fiber optics;;metallic photonic crystals;;end facets of fibers;;integrated sensors;;surface plasmon resonance;;localized surface plasmon resonance;;surface-enhanced Raman scattering
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:北京工业大学应用数理学院信息光电子技术研究所;
  • 出版日期:2017-02-10
  • 出版单位:激光与光电子学进展
  • 年:2017
  • 期:v.54;No.613
  • 基金:国家973计划(2013CB922404);; 国家自然科学基金(11574015)
  • 语种:中文;
  • 页:JGDJ201702001
  • 页数:11
  • CN:02
  • ISSN:31-1690/TN
  • 分类号:7-17
摘要
综述了近年来基于光纤端面集成金属光子结构传感器的发展状况。按照等离激元共振方式和传感器探测原理的不同,将其分为基于表面等离激元共振(SPR)的光纤传感器、基于局域化表面等离激元共振(LSPR)的光纤传感器、基于杂化型等离激元的光纤传感器以及基于表面增强拉曼散射(SERS)效应的光纤传感器。对各类传感器的制备方法、光物理学原理及探测性能进行了概括、对比和总结。
        The recent development status of the sensors based on metallic photonic structures integrated onto end facets of fibers is reviewed.On the basis of the differences in schemes of plasmon resonances and detection principles of sensors,the above sensors are usually categorized into fiber sensors based on surface plasmon resonance(SPR),fiber sensors based on localized surface plasmon resonance(LSPR),fiber sensors based on hybrid plasmons,and fiber sensors based on surface-enhanced Raman scattering(SERS)effect.In addition,the fabrication techniques,photophysical principles,and detection performances of these kinds of sensors are summarized,compared,and concluded.
引文
[1]Zhang X P,Liu H M,Feng S F,et al.Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures[J].Nanotechnology,2009,20(42):425303.
    [2]Liu H M,Zhang X P,Zhai T R,et al.Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms[J].Opt Express,2013,21(13):15314-15322.
    [3]Zhang X P,Sun B Q,Guo H C,et al.Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles[J].Appl Phys Lett,2007,90(13):133114.
    [4]Liu N,Guo H C,Fu L W,et al.Three-dimensional photonic metamaterials at optical frequencies[J].Nature Mater,2008,7(1):31-38.
    [5]Lin Y H,Zhang X P,Fang X H,et al.A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching[J].Nanoscale,2016,8(3):1421-1429.
    [6]Maier S A.Plasmonics:Fundamentals and applications[M].New York:Springer,2007.
    [7]Brongersim M L,Shalaev V M.The case for plasmonics[J].Science,2010,328(5977):440-441.
    [8]Garcia F J,Abajo D.Colloquium:Light scattering by particle and hole arrays[J].Reviews of Modern Physics,2007,79(4):1267-1273.
    [9]Schuuer J A.Plasmonics for extreme light concentration and manipulation[J].Nature Mater,2010,9(3):193-204.
    [10]Novotny L,Hulst N V.Antennas for light[J].Nature Photon,2011,5(2):83-90.
    [11]Willets K A,Duyne R R.Localized surface plasmon resonance spectroscopy and sensing[J].Annu Rev Phys Chem,2007(58):267-297.
    [12]Li J F,Huang Y F,Ding Y.Shell-isolated nanoparticle-enhanced Raman spectroscopy[J].Nature,2010,464(7287):392-395.
    [13]Gordon R,Sinton D,Kavanagh K L,et al.A new generation of sensors based on extraordinary optical transmission[J].Accounts Chem Res,2008,41(8):1049-1057.
    [14]Mayer K M,Hafiier J H.Localized surface plasmon resonance sensors[J].Chem Rev,2011,111(6):3828-3857.
    [15]Anker J N.Biosensing with plasmonic nanosensors[J].Nature Mater,2008,7(6):442-453.
    [16]Liu Y,Cheng R,Liao L,et al.Plasmon resonance enhanced multicolour photo detection by grapheme[J].Nature Commun,2010,2(1):579-585.
    [17]Gramotnev D K,Bozhevolnyi S I.Plasmonics beyond the diffraction limit[J].Nature Photon,2010,4(2):83-91.
    [18]Ozbay E.Plsmonics:Merging photonics and electronics at nanoscale dimensions[J].Science,2006,311(5758):189-193.
    [19]Wang Wei,Ding Dongfa,Xia Junlei.Interferometric fiber optic sensor light-electronics technology[M].Beijing:Science Press,2012.王巍,丁东发,夏君磊.干涉型光纤传感用光电子器件技术[M].北京:科学出版社,2012.
    [20]Zhao Li.Analysis on market status quo of chinese optical fiber sensor industry and its market prospective[J].Study on Optical Communications,2012,40(1):45-48.赵立.我国光纤传感器市场发展前景分析[J].光通信研究,2012,40(1):45-48.
    [21]Yan Haozhe,Dai Nengli,Peng Jinggang,et al.Progress of metallic core micro structured fibers[J].Laser&Optoelectronics Progress,2011,48(11):110605.严皓哲,戴能利,彭景刚,等.金属丝微结构光纤的研究进展[J].激光与光电子学进展,2011,48(11):110605.
    [22]Zhang Jiangtao,Gu Zhengtian.Principle and study progress of fiber optic chemical sensor based on surface plasmon resonance[J].Laser&Optoelectronics Progress,2008,45(10):24-31.张江涛,顾铮.光纤表面等离子体共振光化学传感器的原理及进展[J].激光与光电子学进展,2008,45(10):24-31.
    [23]Gu Zhengtian,Deng Chuanlu.Application and development of coated fiber grating[J].Chinese J Lasers,2009,36(6):1317-1326.顾铮,邓传鲁.镀膜光纤光栅应用与发展[J].中国激光,2009,36(6):1317-1326.
    [24]Shuai Binbin,Xia Li,Zhang Yating,et al.Principle and study progress of surface plasmon resonance sensors based on gratings[J].Laser&Optoelectronics Progress,2011,48(10):100502.帅彬彬,夏历,张雅婷,等.基于光栅的表面等离子体共振传感器的原理及进展[J].激光与光电子学进展,2011,48(10):100502.
    [25]Kostovski G,Stoddart P R,Mitchell A.The optical fiber tip:An inherently light-coupled microscopic platform for micro-and nanotechnologies[J].Adv Mater,2014,26(23):3798-3820.
    [26]Ricciardi A,Crescitelli A,Vaiano P,et al.Lab-on-fiber technology:A new vision for chemical and biological sensing[J].Analyst,2015,140(24):8068-8079.
    [27]Navarrete M,Herrera N D,Cano A G,etal.Plasmon resonance in the visible region in sensors based on tapered optical fibers[J].Sens Actuator B:Chem,2014(190):881-890.
    [28]Chang Y J,Chen Y C,Kuo H L,et al.Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip[J].J Biomed Opt,2014,11(1):014032.
    [29]Lin H Y,Huang C H,Cheng G L,et al.Tapered optical fiber sensor based on localized surface plasmon resonance[J].Opt Express,2012,20(19):21693-21701.
    [30]Wieduwilt T,Kirsch K,Dellith J,et al.Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance[J].Plasmonics,2013,8(2):545-554.
    [31]Gordon J D,Lowder T L,Selfridge R H,et al.Optical D-fiber-based volatile organic compound sensor[J].Appl Optics,2007,46(32):7805-7810.
    [32]Fang X,Liao C R,Wang D N.Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing[J].Opt Lett,2010,35(7):1007-1009.
    [33]Caucheteur C,Guo T,Albert J.Review of plasmonic fiber optic biochemical sensors:Improving the limit of detection[J].Anal Bioanal Chem,2015,407(14):3883-3897.
    [34]Guo T,Liu F,Guan B O,et al.Tilted fiber grating mechanical and biochemical sensors[J].Opt Laser Tech,2016,78:19-33.
    [35]Smythe E J,Dickey M D,Whitesides G M,et al.A technique to transfer metallic nanoscale patterns to small and nonplanar surfaces[J].ACS Nano,2009,3(1):59-66.
    [36]Mullen K I,Carron K T.Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes[J].Anal Chem,1991,63(19):2196-2199.
    [37]Mullen K I,Wang D X,Crane L G,et al.Determination of pH with surface-enhanced Raman fiber optic probes[J].Anal Chem,1992,64(8):930-936.
    [38]Lipomi D J,Martinez R V,Kats M A,et al.Patterning the tips of optical fibers with metallic nanostructures using nanoskiving[J].Nano Lett,2011,11(2):632-636.
    [39]Jia P P,Yang J.A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing[J].Nanoscale,2014,6(15):8836-8843.
    [40]Jia P P,Yang J.Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing[J].Appl Phys Lett,2013,102(24):243107.
    [41]Feng S F,Zhang X P,Wang H,et al.Fiber coupled waveguide grating structures[J].Appl Phys Lett,2010,96(13):133101.
    [42]Feng S F,Sabrina D,Torsten H,et al.A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber[J].Small,2012,8(12):1937-1944.
    [43]Nguyen H,Sidiroglou F,Collins S F,et al.A localized surface plasmon resonance-based optical fiber sensor with subwavelength apertures[J].Appl Phys Lett,2013,103(19):193116.
    [44]Xie Z W,Feng S F,Wang P J,et al.Demonstration of a 3Dradar-like SERS sensor micro-and nanofabricated on an optical fiber[J].Adv Opt Mater,2015,3(9):1232-1239.
    [45]Gissibl T,Thiele S,Herkommer A,et al.Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres[J].Nature Commun,2016(7):11763.
    [46]Maier S A,Atwater H A.Plasmonics:Localization and guiding of electromagnetic energy in metal/dielectric structures[J].J Appl Phys,2005,98(1):011101.
    [47]Barnes W L,Dereux A,Ebbesen T W.Surface plasmon subwavelength optics[J].Nature,2003,424(6950):824-830.
    [48]Hibbins A P,Murray W A,Tyler J,et al.Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure[J].Phys Rev B,2006,74(7):073408-1-4.
    [49]Berini P.Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of asymmetric structures[J].Phys Rev B,2001,63(12):125417-1-15.
    [50]Berini P.Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures[J].Phys Rev B,2000,61(15):104846-10503.
    [51]Berini P.Long-range surface plasmon polaritons[J].Adv Opt Photonics,2009,1(1):484-588.
    [52]Hutter E,Fendler J H.Exploitation of localized surface plasmon resonance[J].Adv Mater,2004,16(19):1685-1706.
    [53]Luther J M,Jain P K,Ewers T,et al.Localized surface plasmon resonances arising from free carriers in doped quantum dots[J].Nature Mater,2011,10(5):361-366.
    [54]Smith C L,Stenger N,Kristensen A,et al.Gap and channeled plasmons in tapered grooves:A review[J].Nanoscale,2015,7(21):9355-9386.
    [55]Nylander C,Liedberg B,Lind T.Gas detection by means of surface plasmons resonance[J].Sensors Actuat,1982,3:79-88.
    [56]Liedberg B,Nylander C,Lundstr9m I.Surface plasmons resonance for gas detection and biosensing[J].Sensors Actuat,1983,4:299-304.
    [57]Homola J,Yee S S,Gauglitz G.Surface plasmon resonance sensors:Review[J].Sensors Actuat B,1999,54(1-2):3-15.
    [58]Homola J.Present and future of surface plasmon resonance biosensors[J].Anal Bioanal Chem,2003,377(3):528-53.
    [59]Zhang Z J,Chen Y Y,Liu H J,et al.On-fiber plasmonic interferometer for multi-parameter sensing[J].Opt Express,2015,23(8):10732-10741.
    [60]He X L,Yi H,Long J,et al.Plasmonic crystal cavity on single-mode optical fiber end facet for label-free biosensing[J].Appl Phys Lett,2016,108(23):231105.
    [61]Ameling R,Langguth L,Hentsche M,et al.Cavity-enhanced localized plasmon resonance sensing[J].Appl Phys Lett,2010,97(25):253116.
    [62]Zhang X P,Ma X M,Dou F,et al.A biosensor based on metallic photonic crystals for the detection of specific bioreactions[J].Adv Funct Mater,2011,21(22):4219-4227.
    [63]Zhan Y H,Lei D Y,Li X F,et al.Plasmonic fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing[J].Nanoscale,2013,6(9):4705-4715.
    [64]Liu F F,Zhang X P.Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications[J].Biosens&Bioelectronics,2015,68:719-725.
    [65]Consales M,Ricciardi A,Crescitelli A,et al.Lab-on-fiber technology:Toward multifunctional optical nanoprobes[J].ACS Nano,2012,6(4):3163-3170.
    [66]Lin Y B,Zou Y,Robert G L.A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing[J].Biomed Opt Express,2011,2(3):478-484.
    [67]Pisco M,Galeotti F,Quero G,et al.Miniaturized sensing probes based on metallic dielectric crystals self-assembled on optical fiber tips[J].ACS Photon,2014,1(10):917-927.
    [68]Micco A,Ricciardi A,Pisco M,et al.Optical fiber tip templating using direct focused ion beam milling[J].Sci Rep,2015,5:15935
    [69]Wang H,Xie Z W,Zhang M L,et al.A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm[J].Opt Laser Tech,2016,78:110-115.
    [70]Liu H M,Zhang X P,Zhai T R,et al.Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures[J].Nanoscale,2014,6(10):5099-5105.
    [71]Chu Y Z,Mohamad G B,Kenneth B C.Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies[J].ACS Nano,2010,4(5):2804-2810.
    [72]Stoddart P R,Jayawardhana M S.Nanofabrication of surface-enhanced Raman scattering substrates for optical fiber sensors[C].SPIE,2013,8613:86130M.
    [73]Liu Y,Huang Z L,Zhou F,et al.Highly sensitive fibre surface-enhanced Raman scattering probes fabricated using laser-induced self-assembly in a meniscus[J].Nanoscale,2016,8(20):10607-10614.
    [74]Shi C,Yan H,Gu C,et al.A double substratesandwich"structure for fiber surface enhanced Raman scattering detection[J].Appl Phys Lett,2008,92(10):103107.
    [75]Smythe E J,Dickey M D,Bao J M,et al.Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection[J].Nano Lett,2009,9(3):1132-1138.
    [76]Yang X,Ileri N,Larson C C,et al.Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering[J].Opt Express,2012,20(22):24189-24826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700