航空发动机叶片自适应修复目标曲面重构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Target surface research of aero-engine blade adaptive repairing driven by image model
  • 作者:聂兆伟 ; 熊丹丹
  • 英文作者:NIE Zhaowei;XIONG Dandan;School of Mechanical Engineering,Nanjing University of Science and Technology;Beijing Shenzhou Aerospace Software Technology Co.Ltd.;
  • 关键词:叶片修复 ; 加工曲面 ; 实作模型 ; 公差约束 ; 镜像模型 ; 航空发动机 ; 曲面重构
  • 英文关键词:blade repairing;;machining surface;;practical model;;tolerance constraint;;image model;;aero-engine;;surface reconstruction
  • 中文刊名:JSJJ
  • 英文刊名:Computer Integrated Manufacturing Systems
  • 机构:南京理工大学机械学院;北京神舟航天软件技术有限公司;
  • 出版日期:2018-08-14 16:21
  • 出版单位:计算机集成制造系统
  • 年:2019
  • 期:v.25;No.249
  • 基金:国家自然科学基金资助项目(51775445);; 陕西省基础科学基金资助项目(2016JM5040);; 航天科学技术基金资助项目~~
  • 语种:中文;
  • 页:JSJJ201901005
  • 页数:8
  • CN:01
  • ISSN:11-5946/TP
  • 分类号:57-64
摘要
航空发动机叶片修复往往先采用激光熔覆,然后精密铣削。叶片变形和破损可能造成熔覆材料不足或铣削结果超差。为了给叶身熔覆和铣削提供足够的余量和满足设计要求的目标加工曲面,提出镜像模型驱动的叶身自适应修复曲面重构方法。以叶身设计曲面作为理论模型,以实际待修复叶身的测量值作为实作模型,引入叶身形状公差约束和叶身变形对熔覆和铣削加工的约束,建立了保证叶身曲面设计要求的目标曲面优化模型,并基于镜像模型优化处理熔覆阶段与铣削阶段的目标曲面。通过实例验证了所提优化模型的有效性和必要性。
        Cost could be reduced with blade repairing.Laser cladding is used to add material on to-be-repaired blade.Defect or deformation maybe occurs on the used blade.To provide enough allowance for laser cladding and to find a machining surface covered by fused surface for milling,an adaptive repairing surface reconstruction method driven by images model was proposed,which took the design surface as the theory model and the practical measured value as the implementation model.The form tolerance and deformation of blade were introduced into machining surface optimization model to establish the objective surface optimization model for ensuring tolerance requirements.The effectiveness and necessity of proposed optimization model was proved by an application.
引文
[1]BAI Ruijin,ZHANG Liguo.Turbine blade repairing and its market analysis[J].Aeronautical Manufacturing Technology,2002(12):32-35(in Chinese).[白瑞金,张利国.涡轮叶片修复及其市场分析[J].航空制造技术,2002(12):32-35.]
    [2]BREMER C,GMBH B.Automated repair and overhaul of aero-engine and industrial gas turbine components[C]//Proceengs of ASME Turbo Expo 2005:Power For Land,Sea and Air.New York,N.Y.,USA:ASME,2005:841-846.
    [3]WANG Hao,WANG Liwen,WANG Tao,et al.Method and implementation of remanufacture and repair of aircraft engine damaged blades[J].Acta Aeronautica et Astronautica Sinica,2016,37(3):1036-1048(in Chinese).[王浩,王立文,王涛,等.航空发动机损伤叶片再制造修复方法与实现[J].航空学报,2016,37(3):1036-1048.]
    [4]TIAN Wei,XU Bo,LIAO Webhe.Fast process planning technology of laser cladding for green remanufacturing[J].Laser&Optoelectronics Progress,2011,48(11):117-121(in Chinese).[田威,许波,廖文和.激光熔覆绿色再制造快速工艺规划技术研究[J].激光与光电子学进展,2011,48(11):117-121.]
    [5]LI Zhi,GAO Jian,WU Haidong.Surface reconstruction for repair of twisted turbine blades[J].Machinery Design&Manufacture,2012(10):147-149(in Chinese).[李志,高健,吴海东.面向扭曲叶片修复的曲面重构技术研究[J].机械设计与制造,2012(10):147-149.]
    [6]CHEN Ying,SUN Wenlei,HUANG Yong,et al.Pathplanning of laser cladding for curved surface parts[J].Laser&Optoelectronics Progress,2016(6):208-216(in Chinese).[陈影,孙文磊,黄勇,等.曲面零件的激光熔覆路径规划[J].激光与光电子学进展,2016(6):208-216.]
    [7]DAI Shijie,ZHANG Yi,WANG Zhiping,et al.Trajectory planning of aeroengine blade welding repair based on NURBS[J].Transactions of the China Welding Institution,2015,36(1):23-26(in Chinese).[戴士杰,张熠,王志平,等.基于NURBS的航空发动机叶片焊接修复的轨迹规划[J].焊接学报,2015,36(1):23-26.]
    [8]WANG Tao,DING Huapeng,LIU Yiliu,et al.LDMD-orientedblade remanufacturing based on csc character reconstruction and defect model extraction[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(8):333-337(in Chinese).[王涛,丁华鹏,刘一骝,等.基于叶型特征重建和缺陷模型提取的LDMD叶片再制造[J].农业机械学报,2015,46(8):333-337.]
    [9]WANG T,DING H P,WANG H,et al.Virtual remanufacturing:cross-section curve reconstruction for repairing a tip-defective blade[J].Journal of Mechanical Engineering Science,2015,229(17):3141-3152.
    [10]ZHANG Y Z,YANG Z Y,HE G Z,et al.Remanufacutringoriented geometric modeling for the damaged region of components[J].Procedia CIRP,2015,29:798-803.
    [11]SUN Y W,XU J T,GUO D M,et al.A unified localization approach for machining allowance optimization of complex curved surfaces[J].Precision Engineering,2009,33(4):516-523.
    [12]SHEN B,HUANG G Q,MAK K L,et al.A best-fitting algorithm for optimal location of large-scale blanks with freeform surfaces[J].Journal of Materials Processing Technology,2003,139(1/2/3):310-314.
    [13]YAN S J,ZHOU Y F,PENG F Y,et al.Research on the localization of the workpieces with large sculptured surfaces in NC maching[J].International Journal of Advanced Manufacturing Technology,2004,23(5/6):429-435.
    [14]ZHU L M,XIONG Z H,DING H,et al.A distance function based approach for localization and profile error evaluation of complex surface[J].Journal of manufacturing Science and Engineering,2004,126(3):542-554.
    [15]ZHU L M,ZHANG X M,DING H,et al.Geometry of signed point-to-surface distance function and its application to surface approximation[J].Journal of Computing&Information Science in Engineering,2010,10(4):041003.DOI:10.1115/1.3510588.
    [16]XU J T,WU J H,HOU W B.Parts localization oriented practical method for point projection on model surfaces based on subdivision[J].Computer-Aided Design and Applications,2015,12(1):67-75.
    [17]WU B H,WANG J,ZHANG Y,et al.Adaptive location of repaired blade for multi-axis milling[J].Journal of Computational Design and Engineering,2015,2(4):261-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700