喉部跨音速条件下二次流互击喷嘴的雾化特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Atomization characteristics of secondary-flow impinging injector in the transonic flow of nozzle throat
  • 作者:张扬 ; 谢侃 ; 岳明辉 ; 郭常超 ; 徐启 ; 王宁飞
  • 英文作者:ZHANG Yang;XIE Kan;YUE Ming-hui;GUO Chang-chao;XU Qi;WANG Ning-fei;School of Aerospace Engineering,Beijing Institute of Technology;
  • 关键词:流体喉部 ; 互击喷嘴 ; 粒度分析仪 ; 平均粒径 ; 雾化
  • 英文关键词:fluid throat;;impinging injector;;particle size analyzer;;average particle size;;atomization
  • 中文刊名:GTHJ
  • 英文刊名:Journal of Solid Rocket Technology
  • 机构:北京理工大学宇航学院;
  • 出版日期:2016-08-15
  • 出版单位:固体火箭技术
  • 年:2016
  • 期:v.39;No.175
  • 语种:中文;
  • 页:GTHJ201604006
  • 页数:6
  • CN:04
  • ISSN:61-1176/V
  • 分类号:35-40
摘要
为了研究二次流互击喷嘴的雾化效果以及对发动机推力的影响,在跨音速条件下进行了流体喉部的冷流试验。研究了发动机喷管出口处羽流雾滴的累积体积分布、索太尔平均直径SMD和液雾分布指数N。通过试验获得了不同压比和喷射方案条件下的羽流粒度数据。研究结果表明,随着压比的增加,SMD减小,雾化的均匀性提高;雾化效果最好的喷射方案为喉扩喷射,同时扼喉能力与推力效率随着流量比的增加而提高。
        In order to study atomization effects of secondary-flow impinging injector under the transonic condition on engine thrust,a series of cold-flow tests of fluidic nozzle throat were performed. The cumulative volume distribution,Sauter mean diameter( SMD) and droplet distribution index( N) of plume at the exit of engine nozzle were studied.The particle sizes in the plume were gained at different pressure ratios and injection cases. The test results show that with increasing pressure ratio,the SMD decreases and the uniformity of atomization improves; the best case of atomization quality is the throat expanding section injection,meanwhile,the ability to control the throat and thrust efficiency increases with increasing the secondary-flow mass flow ratio.
引文
[1]Mc Aulay J E.Cold-air investigation of three variable throat area convergent-divergent nozzles[R].NASA TM X-42,1959.
    [2]Gunter F L,Fahrenholz F E.Final report on a study of rocket thrust control by gas injection[R].Massachusetts Institute of Technology,Naval Supersonic Laboratory,Technical Report448,1961.
    [3]Blaszak J J,Fahrenholz F E.Rocket thrust control by gas injection[R].Massachusetts Institute of Technology,Naval Supersonic Laboratory,Technical Report 430,1960.
    [4]Ashraf Ali,Carlos G Rodriguez,Andrew J Neely,et al.Combination of fluidic thrust modulation and vectoring in a 2D nozzle[R].AIAA 2012-3780.
    [5]郭常超,李博,谢侃,等.流体喉部推力特性实验[J].航空动力学报,2015,30(4):999-1007.
    [6]谢侃.固体火箭发动机流体喉部喷管技术[M].国防工业出版社,2015.
    [7]张建华,谢侃.流体喉部喷管二次流矢量控制方案[J].北京航空航天大学学报,2012,38(3):309-313.
    [8]杨道媛,马成良,孙宏魏,等.马尔文激光粒度分析仪粒度检测方法及其优化研究[J].中国粉体技术,2002,8(5):27-30.
    [9]甘舜仙.六分力试验台静态误差分析与调整[J].推进技术,1987(6):73-81.
    [10]刘宏璇.六分力测试方法研究[D].南京:南京理工大学,2008.
    [11]舒霞,吴玉程,陶庆秀,等.Mastersizer2000分析报告解析[J].实验技术与管理,2011,28(2):37-41.
    [12]金如山.航空燃气轮机燃烧室[M].北京:宇航出版社,1985.
    [13]Lefebvre A H.Gas turbine combustion[M].Talor&Francis,1999.
    [14]张弛,张荣伟,徐国强,等.直射式双旋流空气雾化喷嘴的雾化效果[J].航空动力学报,2006,21(5):805-809.
    [15]冯志鹏.气流中液滴破碎特性研究[D].南京:南京航空航天大学,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700