高温高压下碳酸盐熔体对地幔岩电导率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The influences of carbonate melt on the electrical conductivity for pyrolite at high temperature and high pressure
  • 作者:刘兵兵 ; 黄晓葛 ; 李娴 ; 陈祖安
  • 英文作者:LIU BingBing;HUANG XiaoGe;LI Xian;CHEN ZuAn;Institute of Geology and Geophysics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:电导率 ; 碳酸盐熔体 ; 地幔岩 ; 金伯利岩岩浆
  • 英文关键词:Electrical conductivity;;Carbonate melt;;Pyrolite;;Kimberlite magma
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国科学院地质与地球物理研究所地球与行星物理院重点实验室;中国科学院大学;
  • 出版日期:2019-02-15
  • 出版单位:地球物理学报
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金项目(41774096,41574089,41174074)资助
  • 语种:中文;
  • 页:DQWX201902009
  • 页数:14
  • CN:02
  • ISSN:11-2074/P
  • 分类号:104-117
摘要
为了观测含碳酸盐地幔岩部分熔融过程中电导率的变化,厘清碳酸盐熔体在金伯利岩岩浆形成过程中所起的作用,并探讨Slave克拉通中部Lac de Gras地区约80~120km深处的高导成因,我们利用DS 3600t六面顶压机和Solartron 1260阻抗/增益-相位分析仪在1.0~3.0GPa、673~1873K温压条件下分别测量了含碳酸钠(Na_2CO_3)、碳酸钙(CaCO_3)和大洋中脊玄武岩(MORB)的地幔岩样品的电导率.实验结果表明,地幔岩样品的电导率主要受到温度和组分的影响,而压力对其影响较小.在温度低于1023K时,含Na_2CO_3地幔岩样品的电导率明显高于含同比重CaCO_3和MORB的;温度达到1023K时,含Na_2CO_3地幔岩样品开始熔融;但在之后的200K温度区间内,该部分熔融样品的电导率随温度的增加几乎不发生变化.这一现象或许揭示:地幔深部的碳酸质岩浆在快速上升过程中会同化吸收岩石圈地幔中的斜方辉石(Opx),进而形成金伯利岩岩浆,期间岩浆的电导率几乎不发生变化.含CaCO_3和MORB的地幔岩样品分别在1723K和1423K开始熔融,其部分熔融样品的电导率随温度的增加而快速增加.依据前人的研究结果和我们的实验结果,我们认为可以用含碳酸盐的部分熔融样品来解释Slave克拉通中部Lac de Gras地区约80~120km深处的异常高导现象,并推测熔体中碳酸盐的熔体比例小于2wt.%.
        In order to obtain the electrical conductivity of partially molten pyrolite with carbonate and make clear the causes of formation of kimberlite magma and high conductivity zone at depth of about 80~120 km of Lac de Gras area in Central Slave Craton,we measured the electrical conductivity on pyrolite with carbonate melt at pressure of 1.0~3.0 GPa,temperature of 673~1873 Kand frequency ranges of 10-1~106 Hz using Solartron-1260 impedance/Gain-Phase analyzer with DS 3600 t multi-anvil apparatus.The experimental results show that electrical conductivity of partial melting samples is mainly affected by temperature and compositions.The electrical conductivities of samples containing Na_2CO_3 are significantly higher than those of other samples containing CaCO_3 and MORB below 1023 K.The electrical conductivities of partially molten Na_2CO_3-bearing pyrolite hardly increase when increasing temperature at 1073~1273 K.It reveals that carbonated silicate melt has constant electrical conductivity during the formation of kimberlite magma.According to previous experimental data,the high conductivity phenomenon in Lac de Gras area in Central Slave Craton at about 80~120 km may be explained by partially molten pyrolite containing carbonated silicate melt.It is speculated that less than 2 wt.% carbonate melts occur in the kimberlite magma.
引文
Bagdassarov N S,Slutskii A B.2003.Phase transformations in calcite from electrical impedance measurements.Phase Transitions,76(12):1015-1028.
    Bagdassarov N S,Kopylova M G,Eichert S.2007.Laboratory derived constraints on electrical conductivity beneath Slave craton.Physics of the Earth and Planetary Interiors,161(1-2):126-133.
    Brey G P,K9hler T.1990.Geothermobarometry in four-phase lherzolites II.New thermobarometers,and practical assessment of existing thermobarometers.Journal of Petrology,31(6):1353-1378.
    Canil D,Scarfe C M.1990.Phase relations in peridotite+CO2systems to 12GPa:Implications for the origin of kimberlite and carbonate stability in the Earth's upper mantle.Journal of Geophysical Research Solid Earth,95(B10):15805-15816.
    Chan,Nyland E,Gough D I.1973.Partial melting and conductivity anomalies in the upper mantle.Nature Physical Science,244:89-91.
    Dai L D,Li H P,Liu C Q,et al.2005.Experimental study on impedance spectra of iherzolite under high temperature and high pressure.Chinese Journal of High Pressure Physics(in Chinese),19(1):29-34.
    Dai L D,Karato S I.2009a.Electrical conductivity of orthopyroxene:Implications for the water content of the asthenosphere.Proceedings of the Japan Academy,Series B,85(10):466-475.
    Dai L D,Karato S I.2009b.Electrical conductivity of pyrope-rich garnet at high temperature and pressure.Physics of the Earth and Planetary Interiors,176(1-2):83-88.
    Dai L D,Karato S I.2014.The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions.Physics of the Earth and Planetary Interiors,232:51-56.
    Dai L D,Hu H Y,Li H P,et al.2016.Influence of temperature,pressure,and oxygen fugacity on the electrical conductivity of dry eclogite,and geophysical implications.Geochemistry,Geophysics,Geosystems,17(6):2349-2407.
    Dasgupta R,Hirschmann M M,Dellas N.2005.The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3GPa.Contributions to Mineralogy and Petrology,149(3):288-305.
    Dingwell D B,Webb S L.1990.Relaxation in silicate melts.European Journal of Mineralogy,2(2):427-449.
    Evans R L,Jones A G,Garcia X,et al.2011.Electrical lithosphere beneath the Kaapvaal craton,southern Africa.Journal of Geophysical Research:Solid Earth,116(B4):B04105,doi:10.1029/2010JB007883.
    Freybourger M,Gaherty J B,Jordan T H,et al.2001.Structure of the Kaapvaal Craton from surface waves.GeophysicalResearch Letters,28(13):2489-2492.
    Gaillard F,Malki M,Iacono-Marziano G,et al.2008.Carbonatite melts and electrical conductivity in the asthenosphere.Science,322(5906):1363-1365.
    Girnis A V,Brey G P,Ryabchikov I D.1995.Origin of Group 1Akimberlites:Fluid-saturated melting experiments at 45~55kbar.Earth and Planetary Science Letters,134(3-4):283-296.
    Hansen S E,Nyblade A A,JuliàJ,et al.2009.Upper-mantle lowvelocity zone structure beneath the Kaapvaal craton from S-wave receiver functions.Geophysical Journal International,178(2):1021-1027.
    Hashin Z,Shtrikman S.1962.A variational approach to the theory of the effective magnetic permeability of multiphase materials.Journal of Applied Physics,33(10):3125-3131.
    Herzberg C,Raterron P,Zhang J.2000.New experimental observations on the anhydrous solidus for peridotite KLB-1.Geochemistry,Geophysics,Geosystems,1,1051,doi:10.1029/2000GC000089.
    Hirschmann M M.2010.Partial melt in the oceanic low velocity zone.Physics of the Earth and Planetary Interiors,179(1-2):60-71.
    Huang X G,Xu Y S,Karato S I.2005.Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite.Nature,434(7034):746-749.
    Huang X G,Huang X G,Bai W M.2012.Study on the electrical conductivity of carbonated peridotite.Chinese Journal of Geophysics(in Chinese),55(9):3144-3151,doi:10.6038/j.issn.0001-5733.2012.09.032.
    Huang X G,Wang X X,Chen Z A,et al.2017.The experimental research on electrical conductivity for minerals and rocks under condition of upper mantle.Scientia Sinica(Terrae)(in Chinese),47(5):518-529,doi:10.1360/N072016-00305.
    Huebner J S,Dillenburg R G.1995.Impedance spectra of hot,dry silicate minerals and rock:Qualitative interpretation of spectra.American Mineralogist,80(1-2):46-64.
    Irving A J,Wyllie P J.1975.Subsolidus and melting relationships for calcite,magnesite and the join CaCO3-MgCO336kb.Geochimica et Cosmochimica Acta,39(1):35-53.
    James D E,Boyd F R,Schutt D,et al.2004.Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa.Geochemistry,Geophysics,Geosystems,5(1):Q01002,doi:10.1029/2003GC000551.
    Jones A G,Ferguson I J,Chave A D,et al.2001.Electric lithosphere of the Slave craton.Geology,29(5):423-426.
    Jones A G,Lezaeta P,Ferguson I J,et al.2003.The electrical structure of the Slave craton.Lithos,71(2-4):505-527.
    Karato S.1990.The role of hydrogen in the electrical conductivity of the upper mantle.Nature,347(6290):272-273.
    Katsura T,Yoshino T,Manthilake G,et al.2009.Electrical conductivity of the major upper mantle minerals:A review.Russian Geology and Geophysics,50(12):1139-1145.
    Krishna V G,Kaila K L,Reddy P R.1991.Low velocity layers in the subcrustal lithosphere beneath the Deccan Traps region of western India.Physics of the Earth and Planetary Interiors,67(3-4):288-302.
    Maumus J,Bagdassarov N,Schmeling H.2005.Electrical conductivity and partial melting of mafic rocks under pressure.Geochimica et Cosmochimica Acta,69(19):4703-4718.
    Menzies A,Westerlund K,Grütter H,et al.2004.Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property,N.W.T.,Canada:Major element compositions and implications for the lithosphere beneath the central Slave craton.Lithos,77(1-4):395-412.
    Ni H W,Keppler H,Behrens H.2011a.Electrical conductivity of hydrous basaltic melts:Implications for partial melting in the upper mantle.Contributions to Mineralogy and Petrology,162(3):637-650.
    Ni H W,Keppler H,Manthilake M A G M,et al.2011b.Electrical conductivity of dry and hydrous NaAlSi3O8glasses and liquids at high pressures.Contributions to Mineralogy and Petrology,162(3):501-513.
    Nixon P H.1987.Mantle xenoliths.New York:John Wiley&Sons.
    Patro P K,Sarma S V S.2009.Lithospheric electrical imaging of the Deccan trap covered region of western India.Journal of Geophysical Research:Solid Earth,114(B1):B01102,doi:10.1029/2007JB005572.
    Peng W.2012.Electrical conductivity of carbonatite melt-bearing lherzolite in the upper mantle[Master′s thesis](in Chinese).Beijing:Graduate University of Chinese Academy of Sciences.
    Pertermann M,Hirschmann M M.2003a.Anhydrous partial melting experiments on MORB-like eclogite:Phase relations,phase compositions and mineral-melt partitioning of major elements at2-3GPa.Journal of Petrology,44(12):2173-2201.
    Pertermann M,Hirschmann M M.2003b.Partial melting experiments on a MORB-like pyroxenite between 2and 3GPa:Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate.Journal of Geophysical Research:Solid Earth,108(B2):183-185.
    Pickering-Witter J,Johnston A D.2000.The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages.Contributions to Mineralogy and Petrology,140(2):190-211.
    Presnall D C,Simmons C L,Porath H.1972.Changes in electrical conductivity of a synthetic basalt during melting.Journal of Geophysical Research,77(29):5665-5672.
    Ringwood A E.1975.Composition and Petrology of the Earth′s Mantle.New York:McGraw-Hill.
    Ringwood A E,Kesson S E,Hibberson W,et al.1992.Origin of kimberlites and related magmas.Earth and Planetary Science Letters,113(4):521-538.
    Russell J K,Porritt L A,Lavallée Y,et al.2012.Kimberlite ascent by assimilation-fuelled buoyancy..Nature,481(7381):352-356.
    Russell J K,Porritt L A,Hilchie L.2013.Kimberlite:Rapid Ascent of lithospherically modified carbonatitic melts.∥Proceedings of 10th International Kimberlite Conference.New Delhi:Springer,195-210.
    Schmeling H.1986.Numerical models on the influence of partial melt on elastic,anelastic and electrical properties of rocks.Part II:Electrical conductivity.Physics of the Earth and Planetary Interiors,43(2):123-136.
    Shankland T J,Waff H S.1977.Partial melting and electrical conductivity anomalies in the upper mantle.Journal of Geophysical Research,82(33):5409-5417.
    SifréD,Gardés E,Massuyeau M,et al.2014.Electrical conductivity during incipient melting in the oceanic low-velocity zone.Nature,509(7498):81-85.
    SifréD,Hashim L,Gaillard F.2015.Effects of temperature,pressure and chemical compositions on the electrical conductivity of carbonated melts and its relationship with viscosity.Chemical Geology,418(4):189-197.
    The MELT Seismic Team.1998.Imaging the deep seismic structure beneath a mid-ocean ridge:The MELT experiment.Science,280(5367):1215-1218.
    Tyburczy J A,Waff H S.1983.Electrical conductivity of molten basalt and andesite to 25kilobars pressure:Geophysical significance and implications for charge transport and melt structure.Journal of Geophysical Research:Solid Earth,88(B3):2413-2430.
    Ulmer P,Sweeney R J.2002.Generation and differentiation of group II kimberlites:Constraints from a high-pressure experimental study to 10 GPa.Geochimica et Cosmochimica Acta,66(12):2139-2153.
    Waff H S.1974.Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry.Journal of Geophysical Research,79(26):4003-4010.
    Wang D J,Yi L,Xie H S,et al.2005.Impedance spectroscopy and its application to material science of the earth′s interior.Earth Science Frontiers(in Chinese),12(1):123-129.
    Wang D J,Mookherjee M,Xu Y S,et al.2006.The effect of water on the electrical conductivity of olivine.Nature,443(7114):977-980.
    Wang D J,Karato S I,Jiang Z T.2013.An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates.Geophysical Research Letters,40(10):2028-2032.
    Wang X X,Huang X G,Bai W M.2016.Experimental study on electrical conductivity of pyrolite and piclogite at high temperature and high pressure.Chinese Journal of Geophysics(in Chinese),59(2):624-632,doi:10.6038/cjg20160219.
    Xu Y S,Shankland T J,Duba A G.2000.Pressure effect on electrical conductivity of mantle olivine.Physics of the Earth and Planetary Interiors,118(1-2):149-161.
    Yang X Z,Keppler H,McCammon C,et al.2011.Effect of water on the electrical conductivity of lower crustal clinopyroxene.Journal of Geophysical Research:Solid Earth,116(B4):B04208,doi:10.1029/2010JB008010.
    Yang X Z,Heidelbach F.2012.Grain size effect on the electrical conductivity of clinopyroxene.Contributions to Mineralogy and Petrology,163(6):939-947.
    Yasuda A,Fujii T,Kurita K.1994.Melting phase relations of an anhydrous mid-ocean ridge basalt from 3to 20GPa:Implications for the behavior of subducted oceanic crust in the mantle.Journal of Geophysical Research:Solid Earth,99(B5):9401-9414.
    Yaxley G M.2000.Experimental study of the phase and melting relations of homogeneous basalt+peridotite mixtures and implications for the petrogenesis of flood basalts.Contributions to Mineralogy and Petrology,139(3):326-338.
    Yoshino T,Matsuzaki T,Yamashita S,et al.2006.Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere.Nature,443(7114):973-976.
    Yoshino T,Nishi M,Matsuzaki T,et al.2008.Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone.Physics of the Earth and Planetary Interiors,170(3-4):193-200.
    Yoshino T,Yamazaki D,Mibe K.2009.Well-wetted olivine grain boundaries in partially molten peridotite in the asthenosphere.Earth and Planetary Science Letters,283(1-4):167-173.
    Yoshino T,Laumonier M,Mcisaac E,et al.2010.Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures:Implications for melt distribution and melt fraction in the upper mantle.Earth and Planetary Science Letters,295(3-4):593-602.
    Yoshino T.2010.Laboratory electrical conductivity measurement of mantle minerals.Surveys in Geophysics,31(2):163-206.
    Yoshino T,Mcisaac E,Laumonier M,et al.2012.Electrical conductivity of partial molten carbonate peridotite.Physics of the Earth and Planetary Interiors,194-195:1-9.
    Zhang B H,Yoshino T.2017.Effect of graphite on the electrical conductivity of the lithospheric mantle.Geochemistry,Geophysics,Geosystems,18(1):23-40.
    代立东,李和平,刘丛强等.2005.高温高压下二辉橄榄岩的阻抗谱实验研究.高压物理学报,19(1):29-34.
    黄小刚,黄晓葛,白武明.2012.碳酸盐化橄榄岩的电性研究.地球物理学报,55(9):3144-3151,doi:10.6038/j.issn.0001-5733.2012.09.032.
    黄晓葛,王欣欣,陈祖安等.2017.上地幔矿物和岩石电导率的实验研究.中国科学:地球科学,47(5):518-529,doi:10.1360/N072016-00305.
    彭伟.2012.含碳酸盐熔体的二辉橄榄岩电性研究[硕士论文].北京:中国科学院研究生院.
    王多君,易丽,谢鸿森等.2005.交流阻抗谱法及其在地球深部物质科学中的应用.地学前缘,12(1):123-129.
    王欣欣,黄晓葛,白武明.2016.高温高压下地幔岩和苦橄质榴辉岩的电导率实验.地球物理学报,59(2):624-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700