固体氧化物电解池结构对其性能的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of the Structure of Solid Oxide Electrolysis Cell on Its Performance
  • 作者:尹燕 ; 杜迎梦 ; 焦魁 ; 杜青 ; 张国宾
  • 英文作者:Yin Yan;Du Yingmeng;Jiao Kui;Du Qing;Zhang Guobin;School of Mechanical Engineering,Tianjin University;
  • 关键词:固体氧化物电解池 ; 金属泡沫 ; 气体扩散层 ; 共电解 ; 气体分布
  • 英文关键词:solid oxide electrolysis cell(SOEC);;metal foam;;gas diffusion layer;;co-electrolysis;;gas distribution
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:天津大学机械工程学院;
  • 出版日期:2019-08-06
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:v.52;No.347
  • 基金:国家重点研究计划资助项目(2017YFB0601904)~~
  • 语种:中文;
  • 页:TJDX201911008
  • 页数:8
  • CN:11
  • ISSN:12-1127/N
  • 分类号:67-74
摘要
固体氧化物电解池(SOEC)能利用可再生能源发电电能高效地将水和二氧化碳转化为氢气和一氧化碳等燃料,同时具有高效、低成本、规模易控等优点,被认为是最有前景的储能方式.固体氧化物电解池结构变化会对电解池导电性能产生影响,同时,显著影响电解池内部的气体传输和传热过程,对电解池性能优化十分重要.为探究结构组成对固体氧化物电解池性能的影响,本文建立了一个固体氧化物电解池共电解水和二氧化碳的三维模型,分析加入阳极气体扩散层(AGDL)和金属泡沫流场对电解池极化曲线、过电势和气体分布等的影响.分析结果表明:相比于没有AGDL的电解池,加入AGDL可以改善脊下气体在催化层和流道之间的传输,同时增大电子传输横截面积,从而减小可逆电压和欧姆过电势.随着AGDL厚度增加,电解池性能改善幅度逐渐变小.将普通流场替换成金属泡沫流场可通过改善流场和多孔电极的气体传输,降低电解电压和提高电解效率.增加阳极泡沫厚度可以在一定程度上改善SOEC性能.而两极均采用金属泡沫流场,由于阳极金属泡沫避免了脊下多孔介质中的氧气积聚,可以进一步提高电解池性能,但性能提升相对较小.
        The solid oxide electrolysis cell(SOEC) can efficiently convert water and carbon dioxide into fuels such as hydrogen and carbon monoxide using electricity generated by renewable energy. It is highly efficient, low-cost, and easy to control, and is considered to be the most promising way to store energy. Structural changes in the SOEC will affect its conductivity; simultaneously, it will significantly affect the gas transmission and heat transfer processes inside the cell, both of which are very important for the optimization of SOEC performance. To investigate the influence of structural composition on the performance of the SOEC, a three-dimensional model of SOEC for the co-electrolysis of water and carbon dioxide was developed. Effects of an anode gas diffusion layer(AGDL) and metal foam flow field on the polarization curves, overpotentials, and gas distribution of the SOEC were analyzed. Results showed that compared to an electrolysis cell without AGDL, the cell with the addition of AGDL can improve the gas transmission under the rib between the catalyst layer and channel, while increasing the cross-sectional area of electron transport,thereby reducing the reversible voltage and ohmic overpotential. As the AGDL thickness increased, the performance of the cell improved and then gradually stabilized. Replacing the traditional flow field with the metal foam flow field on the cathode side decreased the electrolysis voltage and improved electrolysis efficiency by improving gas transmission between flow field and porous electrode. Increasing the thickness of the anode foam improved the SOEC performance to some extent. Because the anode metal foam avoids the accumulation of oxygen in the porous medium under the rib,the performance of the SOEC using metal foam for both sides was further improved; however, the improvement was relatively small.
引文
[1]Yao E,Wang H,Wang L,et al.Multi-objective optimization and exergoeconomic analysis of a combined cooling,heating and power based compressed air energy storage system[J].Energy Conversion&Management,2017,138:199-209.
    [2]Yao E,Wang H,Wang L,et al.Thermo-economic optimization of a combined cooling,heating and power system based on small-scale compressed air energy storage[J].Energy Conversion&Management,2016,118:377-386.
    [3]Wang Y,Liu T,Lei L,et al.High temperature solid oxide H2O/CO2 co-electrolysis for syngas production[J].Fuel Processing Technology,2017,161:248-258.
    [4]Ebbesen S D,Knibbe R,Mogensen M.Co-electrolysis of steam and carbon dioxide in solid oxide cells[J].Journal of the Electrochemical Society,2012,159(8):F482-F489.
    [5]Wendel C H,Braun R J.Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage[J].Applied Energy,2016,172:118-131.
    [6]Becker W L,Braun R J,Penev M,et al.Production of Fischer-Tropsch liquid fuels from high temperature solid oxide co-electrolysis units[J].Energy,2012,47(1):99-115.
    [7]Graves C,Ebbesen S D,Mogensen M,et al.Sustainable hydrocarbon fuels by recycling CO and HO with renewable or nuclear energy[J].Renewable&Sustainable Energy Reviews,2011,15(1):1-23.
    [8]Stempien J P,Ni M,Sun Q,et al.Thermodynamic analysis of combined solid oxide electrolyzer and Fischer-Tropsch processes[J].Energy,2015,81:682-690.
    [9]Bernadet L,Laurencin J,Roux G,et al.Effects of pressure on high temperature steam and carbon dioxide co-electrolysis[J].Electrochimica Acta,2017,253:114-127.
    [10]Molin S,Chrzan A,Karczewski J,et al.The role of thin functional layers in solid oxide fuel cells[J].Electrochimica Acta,2016,204:136-145.
    [11]Ren C,Gan Y,Lee M,et al.Fabrication and characterization of high performance intermediate temperature micro-tubular solid oxide fuel cells[J].Journal of the Electrochemical Society,2016,163(9):F1115-F1123.
    [12]Pan Z,Zhang C,Zhou J,et al.Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nbdoped Co-based perovskite anode[J].Applied Energy,2017,191:559-567.
    [13]Heidari D,Javadpour S,Chan S H.An evaluation of electrochemical performance of a solid oxide electrolyzer cell as a function of co-sintered YSZ-SDC bilayer electrolyte thickness[J].Energy Conversion&Management,2017,150:567-573.
    [14]Dong D,Xu S,Shao X,et al.Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO2 electrolysis without safe gas[J].Journal of Materials Chemistry A,2017,5(46):24098-24102.
    [15]Lin J,Chen L,Liu T,et al.The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell[J].Journal of Power Sources,2018,374:175-180.
    [16]Chen K,Chen X,Zhe L,et al.Performance of an anode-supported SOFC with anode functional layers[J].Electrochimica Acta,2008,53(27):7825-7830.
    [17]Wang Z,Zhang N,Qiao J,et al.Improved SOFCperformance with continuously graded anode functional layer[J].Electrochemistry Communications,2009,11(6):1120-1123.
    [18]Sun X,Chen M,Liu Y L,et al.Durability of solid oxide electrolysis cells for syngas production[J].Journal of the Electrochemical Society,2013,160(9):F1074-F1080.
    [19]Ebbesen S D,Graves C,Mogensen M.Production of synthetic fuels by co-electrolysis of steam and carbon dioxide[J].International Journal of Green Energy,2009,6(6):646-660.
    [20]Jensen S H,Sun X,Ebbesen S D,et al.Pressurized operation of a planar solid oxide cell stack[J].Fuel Cells,2016,16(2):205-218.
    [21]Guan W B,Zhai H J,Jin L,et al.Effect of contact between electrode and interconnect on performance of SOFC stacks[J].Fuel Cells,2011,11(3):445-450.
    [22]Baek S W,Jeong J,Choi W S,et al.Structural and electrochemical properties of interconnect integrated solid oxide fuel cell[J].Materials Research Bulletin,2016,82:126-129.
    [23]Gondolini A,Mercadelli E,Sangiorgi A,et al.Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application[J].Journal of the European Ceramic Society,2017,37(3):1023-1030.
    [24]Du Y M,Qin Y Z,Zhang G B,et al.Modelling of effect of pressure on co-electrolysis of water and carbon dioxide in solid oxide electrolysis cell[J].International Journal of Hydrogen Energy,2019,44(7):3456-3469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700