熔融共混法尼龙66/CaCO_3复合材料性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Synthesis and Properties of polypyrrole/Cadmium Sulfide by Interfacial oxidative Polymerization
  • 作者:康永
  • 英文作者:KANG Yong;Yulin Hanting Chemical Technology & Development Co.,Ltd.;
  • 关键词:熔融共混法 ; 异相成核 ; 球晶尺寸 ; 分解温度 ; 结晶温度
  • 英文关键词:Melt blending;;heterogeneous nucleation;;spherulite size;;decomposition temperature;;crystallization temperature
  • 中文刊名:GXMZ
  • 英文刊名:Journal of Guangxi University for Nationalities(Natural Science Edition)
  • 机构:榆林市瀚霆化工技术开发有限公司;
  • 出版日期:2018-11-15
  • 出版单位:广西民族大学学报(自然科学版)
  • 年:2018
  • 期:v.24;No.90
  • 语种:中文;
  • 页:GXMZ201804017
  • 页数:7
  • CN:04
  • ISSN:45-1350/N
  • 分类号:109-115
摘要
通过熔融共混法在双螺杆挤出机上制备了尼龙66/纳米CaCO_3复合材料,采用扫描电镜(SEM)、偏光显微镜(PLM)、热失重(TGA)和差示扫描量热(DSC)的表征方法研究了纳米碳酸钙对尼龙66/纳米CaCO_3复合材料的多晶行为和热性能的影响.结果表明:纳米碳酸钙粒子在尼龙66基体中分散不均,以团聚体的形式存在;纳米碳酸钙具有异相成核作用,能够使球晶的尺寸减小;尼龙66的分解温度为400℃,纳米CaCO_3的添加使分解温度降低.同时,DSC测试表明,材料中的β晶型使材料的熔融温度降低;添加在尼龙66基体中的纳米碳酸钙会导致结晶温度的降低和吸热峰半高宽的增加;冷却速率越大,结晶温度越低,结晶温度范围越宽.
        The nylon 66/nano-CaCO_3 composites were prepared in a twin-screw extruder by melt compounding.The effect of nano-CaCO_3 on the polymorphic behavior and thermal property of nylon 66/nano-CaCO_3 composites have been studied using scanning electron microscope(SEM), polarized light microscopy(PLM), thermogravimetric analyzer(TGA) and DSC thermal analysis.It was found that, nano-CaCO_3 dispersed in nylon 66 matrix unevenly and exist in the form of aggregates: nano-CaCO_3 has the effect of heterogeneous nucleation and decrease the size of the spherocrystal; the decomposition temperature of nylon 66 is 400 ℃ and the addition of nano-CaCO_3 can reduce decomposition temperature, Also.the DSC results indicate that, β crystal leads to decrease the melting temperature of material; the addition of nano-CaCO_3 in the nylon 66 matrix leads to decreases of crystallization temperatures and increases of the full width at half maximum of the endothermic peaks; moreover, the faster cooling rate can make the crystallization temperature lower and the range of crystallization temperature wider.
引文
[1]唐伟家,吴汾.聚酰胺改性技术进展[J].塑料科技,2002,1(2):38-41.
    [2]唐伟家.世界聚酰胺工程塑料市场及预测[J].工程塑料应用,2003,3(2):56-58.
    [3]周庆丰,路学成,王鹏.聚酰胺的高性能化及改性进展[J].塑料科技,2005,4(5):59-64.
    [4]陈蔚萍,高青雨,米常焕.尼龙66的改性研究进展[J].河南大学学报(自然科学版),2000,30(2):71-72.
    [5]张吉鲁,何杰,李学.改性尼龙66开发现状及应用研究[J].工程塑料应用,2000,28(5):19-23.
    [6]朱军,李毕忠.聚合物/无机纳米复合材料的研究进展[J].化工新型材料,2000,28(10):3-13.
    [7]梦翠省.纳米技术在高分子改性中的应用[J].化工新型材料,2001,29(2):3-6.
    [8]谷元.粉体表面改性技术及其应用[J].化工进展,1994,2(1):33-41.
    [9]丁仲芬,黄少慧.超细粒子分散相对聚合物材料性能的影响[J].塑料加工,1998,2(3):45-50.
    [10]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社,1990(2):25-30.
    [11]朱军,李毕忠.聚合物/无机纳米复合材料的研究进展[J].化工新型材料,2000,28(10):3-13.
    [12]Vaia R A,Wagner H D.Framework for nanocomposites[J].Materials Today,2004,5(11):32-37.
    [13]Pinnavaia T J,Beall G W.Polymer-Clay Nanocomposites[J].Polymer,2000,10(5):18-23.
    [14]王军,宗永才,冯春祥.聚碳硅烷/纳米镍粉的热裂解[J].应用化学,1997,14(2):90-92.
    [15]陈雷,杨文军,黄程.以高分子材料为介质制备纳米氧化铁颗粒[J].高分子材料与工程,1998,14(4):53-55.
    [16]David I A,Scherer G W.An Organic-Iorganic Single-Phase Composite[J].Composites Science and Technology,1995,7(7):1967-1967.
    [17]沈春银,章忠秀.聚合物/纳米粒子复合材料的制备及分散稳定机理[J].Chemistry and Adhension,2000,5(4):178-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700