海南岛澄黄滨珊瑚共生藻对环境变化的适应性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seasonal Responses of Symbiodinium in Stress-tolerant Porites lutea to Environmental Factors on Fringing Reefs of the Hainan Island
  • 作者:许莉佳 ; 余克服 ; 李淑
  • 英文作者:XU Lijia;YU Kefu;LI Shu;Key Laboratory of Marginal Sea Geology,South China Sea Institute of Oceanology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Coral Reef Research Center of China,Guangxi University;School of Marine Sciences,Guangxi University;
  • 关键词:澄黄滨珊瑚 ; 共生藻密度 ; 光合效率 ; 季节变化 ; 海南岛
  • 英文关键词:Hainan Island;;Porites lutea;;effective photochemical efficiency;;Symbiodinium density;;seasonal variation
  • 中文刊名:RDDD
  • 英文刊名:Tropical Geography
  • 机构:中国科学院边缘海地质重点实验室//中国科学院南海海洋研究所;中国科学院大学;广西大学珊瑚礁研究中心;广西大学海洋学院;
  • 出版日期:2016-11-14 16:13
  • 出版单位:热带地理
  • 年:2016
  • 期:v.36
  • 基金:国家重大科学研究计划项目(2013CB956102、2013CB956103);; 国家自然科学基金项目(41025007)
  • 语种:中文;
  • 页:RDDD201606004
  • 页数:8
  • CN:06
  • ISSN:44-1209/N
  • 分类号:23-30
摘要
在全球气候变暖和人类活动加剧导致珊瑚礁严重衰退的背景下,以抗逆性强的澄黄滨珊瑚(Porites lutea)为研究对象,于2013年10月―2014年8月在海南岛文昌和三亚对其共生藻密度及光合效率开展了季节性调查研究。结果显示:1)澄黄滨珊瑚共生藻的密度及光合效率均存在显著的季节变化,共生藻密度在冬季最低、夏季较高,其光合效率在冬季较高,春夏季较低。2)澄黄滨珊瑚共生藻密度的空间差异远小于其季节变化的差异,但水深1~2 m澄黄滨珊瑚共生藻的密度普遍高于水深4~6 m的澄黄滨珊瑚,三亚澄黄滨珊瑚共生藻的光合效率明显高于文昌。3)进一步分析发现,在诸多环境因子中,海表温度SST和水体营养是驱动海南岛澄黄滨珊瑚共生藻密度及光合效率变化的主要环境因素,而光合效率的空间差异则可能是珊瑚对生存环境长期驯化的结果。由于文昌和三亚沿岸海水养殖和潜水旅游等人类活动频繁,礁区海水面临富营养化的风险,推测海南岛澄黄滨珊瑚面临SST上升和营养胁迫联合效应的严重威胁。
        Due to global warming and increase in human activities, coral reefs worldwide have experienced severe declines recently,and scientific studies on their important causes keep on increasing. In this study, 194 samples of stress-tolerant Porites lutea were collected seasonally between October 2013 and August 2014 at fringing reefs in Sanya and Wenchang, Hainan Island, northern South China Sea(SCS), and their algal symbiont density and effective photochemical efficiency(ΦPSII) were measured. The results indicated that both the Symbiodinium density and ΦPSII of P. lutea were subject to significant seasonal and spatial variations(Scheffe test,p<0.05). Seasonally, the mean Symbiodinium density in P. lutea varied from(2.23 ± 0.18) × 10~6 cells/cm~2 to(6.08 ± 0.36) × 10~6 cells/cm~2, with the lowest density occurring in winter but a higher value in summer; the mean ΦPSII of Symbiodinium in P. lutea varied from(0.599 ± 0.01) to(0.717 ± 0.002) during seasons, with a higher ΦPSII in winter yet a lower value in spring and summer. Spatially, the mean Symbiodinium densities in P. lutea at the two reefs were(4.54 ± 0.33) × 10~6 cells/cm~2(Wenchang, 1-2 m depth),(4.65 ± 0.33) × 10~6 cells/cm~2(Sanya, 1-2 m depth), and(3.75 ± 0.29) × 10~6 cells/cm~2(Sanya, 4-6 m depth). Although there were not significant differences between Wenchang and Sanya areas, the mean Symbiodinium densities of corals within 1-2 m depth were higher when compared to corals within 4-6 m depth. The mean ΦPSII of Symbiodinium in P. lutea at the two reefs were(0.625 ± 0.009)(Wenchang, 1-2 m depth),(0.680 ± 0.005)(Sanya, 1-2 m depth), and(0.672 ± 0.004)(Sanya, 4-6 m depth), indicating ΦPSII of corals in Sanya area were higher as compared to corals in Wenchang. Cumulation over the month before sampling showed high correlations with the Symbiodinium density and ΦPSII of P. lutea suggesting that there was a time-lag effect of environmental factors on coral symbiont. Further analysis suggested that SST and nutrients in the reefs were responsible for the observed seasonal variations in symbiont density and ΦPSII of P. lutea, while the spatial difference of ΦPSII probably reflected the coral's photo acclimation; besides, the cold-water upwelling(Qiongdong upwelling, QDU) had to be taken into account for the variations as well. As the reefs have been experiencing coastal constructing, significant marine culturing and tourist diving activities, the reef waters are at the risk of anthropogenic nutrification, thus, the viability of P. lutea is facing severe threat by the effects of nutrient enrichment and temperature increase. Since local management of nutrient enrichment could reduce the effects of global warming on coral reefs, efficient nutrient management strategies are urgently required to be developed and the action should be taken immediately.
引文
[1]YU K F.Coral reefs in the South China Sea:their responses to and records on past environmental changes[J].Sci.China Earth Sci,2012,55(8):1217-1229.
    [2]DE'ATH G,FABRICIUS K E,SWEATMAN H,PUOTINEN M.The27-year decline of coral cover on the Great Barrier Reef and its causes[J].Proc.Natl.Acad.Sci.USA,2012,109:17995-17999.
    [3]BELLWOOD D R,HOEY A S,ACKERMAN J L,DEPCZYNSKI M.Coral bleaching,reef fish community phase shifts and the resilience of coral reefs[J].Global Change Biol.,2006,12:1587-1594.
    [4]HOEGH-GULDBERG O,MUMBY P J,HOOTEN A J,STENECK R S,GREENFIELD P,GOMEZ E,HARVELL C D,SALE P F,EDWARDS A J,CALDEIRA K,KNOWLTON N,EAKIN C M,IGLESIAS-PRIETO R,MUTHIGA N,BRADBURY R H,DUBI A,HATZIOLOS M E.Coral reefs under rapid climate change and ocean acidification[J].Science,2007,318:1737-1742.
    [5]FITT W K,BROWN B E,WARNER M E,DUNNE R P.Coral bleaching:interpretation of thermal tolerance limits and thermal thresholds in tropical corals[J].Coral Reefs,2001,20:51-65.
    [6]JONES R J,WARD S,YANG A A,HOEGH-GULDBERG O.Changes in quantum efficiency of photosystem II of symbiotic dinoflagel-lates of corals after heat stress,and of bleached corals sampled after the 1998Great Barrier Reef mass bleaching event[J].Mar.Freshwater Res.,2000,50:839-866.
    [7]MARSHALL P A,BAIRD A H.Bleaching of corals on the Great Barrier Reef:differential susceptibilities among taxa[J].Coral Reefs,2000,19:155-163.
    [8]李淑,余克服,施祺,陈天然,赵美霞,严宏强.海南岛鹿回头石珊瑚对高温响应行为的实验研究[J].热带地理,2008,28(6):534-539.
    [9]WOOLDRIDGE S A.Differential thermal bleaching susceptibilities amongst coral taxa:re-posing the role of the host[J].Coral Reefs,2014,33:15-27.
    [10]FAGOONEE I,WILSON H B,HASSELL M P,TURNER J R.The dynamics of zooxanthellae populations:A long-term study in the field[J].Science,1999,283:843-845.
    [11]HINRICHS S,PATTEN N L,WAITE A M.Temporal Variations in Metabolic and Autotrophic Indices for Acropora digitifera and Acropora spicifera-Implications for Monitoring Projects[J].PLo S One,2013,8:e63693.
    [12]SAWALL Y,AL-SOFYANI A,BANGUERA-HINESTROZA E,VOOLSTRA C R.Spatio-Temporal Analyses of SymbiodiniumPhysiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea[J].PLo S One,2014,9:e103179.
    [13]BROWNE N K,TAY J K L,LOW J,LARSON O,TODD P A.Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality[J].Mar.Environ.Res.,2015,105:39-52.
    [14]YAN H Q,YU K F,SHI Q,TAN Y H,LIU G H,ZHAO M X,LI S,CHEN T R,WANG Y H.Seasonal variations of seawater p CO2 and seaair CO2 fluxes in a fringing coral reef,northern South China Sea[J].J.Geophys.Res.Oceans,2016,121:998-1008.
    [15]ZHAO M X,YU K F,ZHANG Q M,SHI Q,PRICE G J.Long-term Decline of a Fringing Coral Reef in the Northern South China Sea[J].J.Coast Res.,2012,28:1088-1099.
    [16]ZHAO M X,YU K F,ZHANG Q M,SHI Q,ROFF G.Age structure of massive Porites lutea corals at Luhuitou fringing reef(northern South China Sea)indicates recovery following severe anthropogenic disturbance[J].Coral Reefs,2014,33:39-44.
    [17]张乔民,施祺,陈刚,方静威,黄志俊,黄晖,王汉奎,赵美霞.海南三亚鹿回头珊瑚礁监测与管理策略[J].科学通报,2006,51(增刊II):71-77.
    [18]YU K F,ZHAO J X,LAWRENCE M G,FENG Y X.Timing and duration of growth hiatuses in mid Holocene massive Porites corals from the northern South China Sea[J].J.Quat.Sci.,2010,25:1284-1292.
    [19]蔡泽富,陈石泉,吴钟解,童玉和,黄洁英,张光星,李向民.海南岛东北部沿岸造礁石珊瑚时空分布特征[J].海洋湖沼通报,2015,3:78-86.
    [20]PINIAK G A,BROWN E K.Temporal Variability in Chlorophyll Fluorescence of Back-Reef Corals in Ofu,American Samoa[J].Biol.Bull.,2009,216:55-67.
    [21]SHEARER T L,RASHER D B,SNELL T W,HAY M E.Gene expression patterns of the coral Acropora millepora in response to contact with macroalgae[J].Coral Reefs,2012,31:1177-1192.
    [22]HILL R,TAKAHASHI S.Photosystem II recovery in the presence and absence of chloroplast protein repair in the symbionts of corals exposed to bleaching conditions[J].Coral Reefs,2014,33:1101-1111.
    [23]KEMP D W,HERNANDEZ-PECH X,IGLESIAS-PRIETO R,FITT W K,SCHMIDT G W.Community dynamics and physiology of Symbiodinium spp.before,during,and after a coral bleaching event[J].Limnol.Oceanogr.,2014,59:788-797.
    [24]LI S,YU K,SHI Q,CHEN T,ZHAO M,ZHAO J.Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching[J].Chin.Sci.Bull.,2008,53:295–303.
    [25]周洁,施祺,余克服.三亚造礁石珊瑚虫黄藻光合作用效率的日周期及其调控因素[J].热带海洋学报,2014,33(1):81-89.
    [26]STIMSON J.The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis(Linnaeus)[J].J.Exp.Mar.Biol.Ecol.,1997,214:35-48.
    [27]BROWN B E,DUNNE R P,AMBARSARI I,LE TISSIER M D A,SATAPOOMIN U.Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four IndoPacific coral species[J].Mar.Ecol.Prog.Ser.,1999,191:53-69.
    [28]ULSTRUP K E,HILL R,VAN OPPEN M J H,LARKUM A W D,RALPH P J.Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals[J].Mar.Ecol.Prog.Ser.,2008,361:139-150.
    [29]RODOLFO-METALPA R,REYNAUD S,ALLEMAND D,FERRIER-PAGES C.Temporal and depth responses of two temperate corals,Cladocora caespitosa and Oculina patagonica,from the North Mediterranean Sea[J].Mar.Ecol.Prog.Ser.,2008,369:103-114.
    [30]XING S,TAN Y H,ZHOU L B,LIAN X P,HUANG L M.Effects of water turbidity on the symbiotic zooxanthella of hermatypic corals[J].Chin.Sci.Bull(Chin.Ver.),2012,57:348-354.
    [31]HINRICHS S,PATTEN N L,WAITE A M.Temporal Variations in Metabolic and Autotrophic Indices for Acropora digitifera and Acropora spicifera-Implications for Monitoring Projects[J].PLo S ONE,2013,8:e63693.
    [32]JING Z Y,QI Y Q,HUA Z L,ZHANG H.Numerical study on the summer upwelling system in the northern Continental shelf of the South China Sea[J].Cont.Shelf Res.,2009,29:467-478.
    [33]DUNN J G,SAMMARCO P W,LAFLEUR G J R.Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata:a controlled experimental approach[J].J.Exp.Mar.Biol.Ecol.,2012,411:34-44.
    [34]ANTHONY K R N,HOOGENBOOM M O,MAYNARD J A,GROTTOLI A G,MIDDLEBROOK R.Energetics approach to predicting mortality risk from environmental stress:a case study of coral bleaching[J].Funct.Ecol.,2009,23:539-550.
    [35]FABRICIUS K,DE'ATH G,MCCOOK L,TURAK E,WILLIAMS D M.Changes in algal,coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef[J].Mar.Pollut.Bull.,2005,51:384-398.
    [36]WIEDENMANN J,D'ANGELO C,SMITH E G,HUNT A N,LEGIRET F E,POSTLE A D,ACHTERBERG E P.Nutrient enrichment can increase the susceptibility of reef corals to bleaching[J].Nat.Clim.Chang,2013,3:160-164.
    [37]WOOLDRIDGE S A.Water quality and coral bleaching thresholds:Formalising the linkage for the inshore reefs of the Great Barrier Reef,Australia[J].Mar.Pollut.Bull.,2009,58:745-751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700