油墨污泥热解实验及能量平衡分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:INK SLUDGE PYROLYSIS EXPERIMENT AND ENERGY BALANCE ANALYSIS
  • 作者:龚云 ; 王居 ; 顾萍 ; 朱阁 ; 刘石明 ; 郭利民 ; 肖波
  • 英文作者:GONG Yun;WANG Ju;GU Ping;ZHU Ge;LIU Shi-ming;GUO Li-min;XIAO Bo;Department of Printing and Packing,Shanghai Publishing and Printing College;Huazhong University of Science and Technology;
  • 关键词:油墨污泥 ; 热解 ; 产物特性 ; 能量平衡
  • 英文关键词:ink sludge;;pyrolysis;;product characteristics;;energy balance
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:上海出版印刷高等专科学校印刷包装工程系;华中科技大学;
  • 出版日期:2019-07-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.253
  • 基金:柔版印刷绿色制版与标准化重点实验室“柔印业黑色废渣无害化处理研究”项目
  • 语种:中文;
  • 页:HJGC201907030
  • 页数:6
  • CN:07
  • ISSN:11-2097/X
  • 分类号:169-174
摘要
油墨污泥作为危险废物,实现其低成本减量化、无害化处理处置具有重要意义。采用固定床反应器对油墨污泥在500~900℃内进行了热解实验,研究了油墨污泥热解产物的特性,并分析了其低成本处理处置的可能性。结果表明,实验用油墨污泥挥发性有机物含量高达60. 43%,热解后干污泥减容率可达55%~62%。含水率约80%的污泥经干燥、热解后,固体减容率达到90%,且固体残渣浸出毒性小,可安全填埋。随着反应温度的升高,气体产率增加,热解残渣产率减小,在500℃时气体、热解残渣产率分别为21. 7%、48. 5%,900℃时分别为44. 3%、37. 4%; 600℃时焦油产率最高,达到30. 5%。根据800℃下热解结果进行了能量平衡分析,结果表明:焦油和气体燃烧产生的能量可满足含水率65%的污泥干燥和热解所需,从而实现污泥热解过程的能量自给。
        As a hazardous waste,low-cost reduction and harmless treatment for ink sludge is of great significance in China now. In this paper,a fixed bed reactor was used to carry out pyrolysis experiments on ink sludge at the temperature range of 500 ~ 900 ℃. The paper studied the characteristics of pyrolysis products from ink sludge in pyrolysis process and analyzed the possibility of its low cost treatment and disposal. The results showed that: the content of volatile organic compounds in the tested ink sludge was up to 60. 43%,the volume reduction rate of dry sludge after pyrolysis could reach 55% ~ 62%,and the solid volume reduction rate could reach 90% after drying and pyrolysis of the sludge with original moisture content of 80%. The solid residue had little leaching toxicity that could be safe in landfill. The gas yield increased and the pyrolysis residue yield decreased,with the increase of reaction temperature. At 500 ℃,the gas yield and the pyrolysis residue yield were 21. 7% and 48. 5%,respectively. While at 900 ℃,they were 44. 3% and 37. 4%,respectively. At 600 ℃,the tar yield was the highest( 30. 5%). The results of the energy balance analysis according to the pyrolysis results at 800 ℃ showed that the energy produced by burning of tar and gas met the energy demand of ink sludge drying and pyrolysis,with the moisture content of 65%,thus the energy self-sufficiency in the process of sludge pyrolysis could be realized.
引文
[1]Robert T.“Green ink in all colors”-Printing ink from renewable resources[J].Progress in Organic Coatings,2015,78(77):287-292.
    [2]Mete2 A,Kovacěvic'D,Vujevic'D,et al.The role of zeolites in wastewater treatment of printing inks[J].Water Research,2004,38(14/15):3373-3381.
    [3]Ersu C B,Braida W,Chao K P,et al.Ultrafiltration of ink and latex wastewaters using cellulose membranes[J].Desalination,2004,164(1):63-70.
    [4]Nandy T,Vyas R D,Shastry S,et al.Optimization of Coagulants for Pretreatment of Printing Ink Wastewater[J].Environmental Engineering Science,2002,19(1):1-7.
    [5]Moreira F C,Rui A R B,Brillas E,et al.Electrochemical advanced oxidation processes:a review on their application to synthetic and real wastewaters[J].Applied Catalysis BEnvironmental,2016,202:217-261.
    [6]Ma X J,Xia H L.Treatment of water-based printing ink wastewater by Fenton process combined with coagulation[J].Journal of Hazardous Materials,2009,162(1):86-90.
    [7]Andrade L C,Míguez C G,Gómez M C T,et al.Management strategy for hazardous waste from atomised SME:application to the printing industry[J].Journal of Cleaner Production,2012,35:214-229.
    [8]Patel H,Pandey S.Evaluation of physical stability and leachability of Portland pozzolona cement(PPC)solidified chemical sludge generated from textile wastewater treatment plants[J].Journal of Hazardous Materials,2012,207/208(3):56-64.
    [9]Liu X J,Chang F M,Wang C P,et al.Pyrolysis and subsequent direct combustion of pyrolytic gases for sewage sludge treatment in China[J].Applied Thermal Engineering,2018,128:464-470.
    [10]Ma R,Sun S C,Geng H H,et al.Study on the characteristics of microwave pyrolysis of high-ash sludge,including the products,yields,and energy recovery efficiencies[J].Energy,2018,144:515-525.
    [11]Saifullah,Dahlawi S,Naeem A,et al.Biochar application for the remediation of salt-affected soils:challenges and opportunities[J].Science of the Total Environment,2018,625:320-335.
    [12]Li W Y,Loyola-Licea C,Crowley D E,et al.Performance of a two-phase biotricklinglter packed with biochar chips for treatment of wastewater containing high nitrogen and phosphorus concentrations[J].Process Safety and Environmental Protection,2016,102:150-158.
    [13]Xie Q L,Peng P,Liu S Y,et al.Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production[J].Bioresource Technology,2014,172:162-168.
    [14]Luo S Y,Guo J X,Feng Y.Hydrogen-rich gas production from pyrolysis of wet sludge in situ steam agent[J].International Journal of Hydrogen Energy,2017,42(29):18309-18314.
    [15]Zhang H D,Gao Z P,Liu Y,et al.Microwave-assisted pyrolysis of textile dyeing sludge,and migration and distribution of heavy metals[J].Journal of Hazardous Materials,2018,355:128-135.
    [16]Liu T T,Liu Z G,Zheng Q F,et al.Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis[J].Bioresource Technology,2018,247:282-290.
    [17]Friedl A,Padouvas E,Rotter H,et al.Prediction of heating values of biomass fuel from elemental composition[J].Analytica Chimica Acta,2005,544(1/2):191-198.
    [18]Lou R,Wu S B,Lv G J,et al.Energy and resource utilization of deinking sludge pyrolysis[J].Applied Energy,2012,90(1):46-50.
    [19]Menéndez J A,Inguanzo M,Pis J J.Microwave-induced pyrolysis of sewage sludge[J].Water Research,2002,36(13):3261-3264.
    [20]Chen W H,Wang C W,Kumar G,et al.Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS[J].Bioresource Technology,2018,259:469-473.
    [21]吴代赦,郑宝山,唐修义,等.中国煤中氮的含量及其分布[J].地球与环境,2006,34(1):1-6.
    [22]胡军,郑宝山,王明仕,等.中国煤中硫的分布特征及成因[J].煤炭转化,2005,28(4):1-6.
    [23]Fytili D,Zabaniotou A.Utilization of sewage sludge in EUapplication of old and new methods:a review[J].Renewable&Sustainable Energy Reviews,2008,12(1):116-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700