基于TMD控制的风力机结构抗震研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ANTI-SEISMIC STUDY OF WIND TURBINE STRUCTURE BASED ON TMD
  • 作者:刘中胜 ; 杨阳 ; 李春 ; 邹锦华 ; 汤金桦
  • 英文作者:LIU ZhongSheng;YANG Yang;LI Chun;ZOU JinHua;TANG JinHua;School of Energy and Power Engineering,University of Shanghai for Science and Technology;Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering;
  • 关键词:风力机 ; 地震 ; TMD ; 动力响应 ; 稳定性
  • 英文关键词:Wind turbine;;Earthquake;;Tuned mass damper(TMD);;Dynamic response;;Stability
  • 中文刊名:JXQD
  • 英文刊名:Journal of Mechanical Strength
  • 机构:上海理工大学能源与动力工程学院;上海市动力工程多相流动与传热重点实验室;
  • 出版日期:2019-08-05
  • 出版单位:机械强度
  • 年:2019
  • 期:v.41;No.204
  • 基金:国家自然科学基金项目(51676131,51176129)资助~~
  • 语种:中文;
  • 页:JXQD201904004
  • 页数:7
  • CN:04
  • ISSN:41-1134/TH
  • 分类号:26-32
摘要
湍流风与地震是导致风力机塔架振动最主要的因素。为研究风-震耦合工况下风力机结构的动力学响应特性及抗震控制,以NREL 5 MW风力机为研究对象,通过Wolf方法建立土-构耦合模型,基于多体动力学仿真开源软件FAST平台二次开发地震载荷计算模块,通过自编译程序在塔顶配置调谐质量阻尼器(Tuned Mass Damper,TMD),对地震作用下风力机塔架进行结构控制。结果表明:地震载荷极大加剧了塔架侧向振动,激振频率为塔架一阶侧向固有频率;TMD控制时塔架和机舱动力响应明显减小,其中塔顶侧向位移幅值变化范围缩小18%,标准差减小了67%,塔架一阶固有频率处响应幅值大幅降低,高达90%;塔顶侧向加速度变化幅度降低4%,标准差缩小了61%,塔架一阶固有频率处振动峰值降低了88%。结果表明,TMD方法可用于地震等极端环境下风力机的抗震控制,提高风力机运行稳定性。
        Turbulent winds and earthquakes are the two main factors that lead to the vibration of the wind turbine tower. In order to study the dynamic response characteristics and anti-seismic of wind turbine structure under wind-earthquake coupling condition, NREL 5 MW wind turbine is studied. A soil-structure interaction model was established by Wolf Method, and based on the multi body dynamics simulation and open source software FAST, the seismic load calculation module is developed. The structural control of the wind turbine tower under the seismic condition is carried out by configuring a tuned mass damper(Tuned Mass damper, TMD) at the top of the tower by self-compiling program. The results show that the seismic load greatly increases the lateral vibration of the tower, and the excitation frequency is the first-order lateral natural frequency of the tower. Under the control of TMD, the dynamic response of tower and nacelle are obviously reduced, where the amplitude of lateral displacement of the tower top is reduced by 18%, the standard deviation is reduced by 67%, and the response amplitude of the first order natural frequency of tower is greatly reduced, as high as 90%. Additionally, the variation of the lateral acceleration of the tower top is reduced by 4%, the standard deviation is reduced by 61%, and the peak vibration of the first-order natural frequency decreases by 88%. Therefore, the TMD can be used for anti-seismic of wind turbines in extreme environments such as earthquakes, and improve the stability of wind turbines.
引文
[1] U.S.Department of Energy.20% Wind Energy By 2030:Increasing Wind Energy's Contribution to US Electricity Supply[R].Office of Energy Efficiency & Renewable Energy,Washington,USA,2008:4-10.
    [2] Lauha F.Global wind statistics 2016[R].Global Wind Energy Council,Colorado,USA,2017:6-20.
    [3] 杨阳,李春,缪维跑,等.湍流风场与地震激励联合作用下的风力机结构动力学响应[J].振动与冲击,2016,34(21):136-143.YANG Yang,LI Chun,MIAO WeiPao,et al.Structural dynamic responses of a wind turbine under turbulent wind combined with seismic motion [J].Journal of Vibration and Shock,2016,34(21):136-143(In Chinese).
    [4] 王渊博,李春,缪维跑,等.基于全风场功率输出的风力机控制策略研究[J].中国电机工程学报,2017,37(15):4437-4445.WANG YuanBo,LI Chun,MIAO WeiPao,et al.Research on the control strategies of the wind turbine based on the total output powers of the global wind farm [J].Proceeding of the CSEE,2017,37(15):4437-4445(In Chinese).
    [5] 杨阳,李春,叶柯华,等.基于HHT方法的非稳定工况风力机结构动态响应时频特性分析[J].振动与冲击,2016,35(21):22-29.YANG Yang,LI Chun,YE KeHua,et al.Structural dynamic response characteristics of a wind turbine in time-frequency domain under non-stationary operating conditions based on HHT method [J].Journal of Vibration and Shock,2016,35(21):22-29(In Chinese).
    [6] 吴攀.风况特性及地震载荷对风力机性能与结构影响研究[D].上海:上海理工大学,2014:14-16.WU Pan.Research on wind condition and seismic loads of performance and structure of wind turbine [D].Shanghai:University of Shanghai for Science & Technology,2014:14-16(In Chinese).
    [7] 戴靠山,易立达,刘瑶,等.某风电塔结构基于性能的抗震分析[J].结构工程师,2015,31(5):96-102.DAI KaoShan,YI LiDa,LIU Yao,et al.Performance-based seismic design of a wind turbine tower [J].Structural Engineers,2015,31(5):96-102(In Chinese).
    [8] 宋波,曾洁.风电塔非线性地震动力响应规律与极限值评价[J].北京科技大学学报,2013,35(10):1382-1389.SONG Bo,ZENG Jie.Nonlinear seismic dynamic response and critical value evaluation based on limit states of wind turbine tower structures [J].Journal of University of Science and Technology Beijing,2013,35(10):1382-1389(In Chinese).
    [9] 杨阳,李春,袁全勇.大型风力机地震动力响应研究[J].热能与动力工程,2017,32(5):105-110.YANG Yang,LI Chun,YUAN QuanYong.Research on dynamic response of large-scale wind turbine on seismic condition [J].Journal of Engineering for Thermal Energy and Power,2017,32(5):105-110(In Chinese).
    [10] 贺广零,周勇,李杰.风力发电高塔系统地震动力响应分析[J].工程力学,2009,26(7):72-77.HE Guangling,ZHOU Yong,LI Jie.Seismic analysis of wind turbine system [J].Engineering Mechanics,2009,26(7):72-77(In Chinese).
    [11] Asareh M A,Prowell I.Seismic loading for FAST [R].National Renewable Energy Laboratory,Golden,CO,Technical Report No.NREL/SR-5000-53872,2011:6-12.
    [12] Mohammad-Amin Asareh,Ian Prowell,Jeffery Volz,et al.A computational platform for considering the effects of aerodynamic and seismic load combination for utility scale horizontal axis wind turbines [J].Earthquake Engineering and Engineering Vibration,2016,15(1):91-102.
    [13] Nuta E,Christopoulos C,Packer J A.Methodology for seismic risk assessment for tubular steel wind turbine towers application to Canadian seismic environment [J].Canadian Journal of Civil Engineering,2011,38(3):293-304.
    [14] 吴攀,李春,李志敏,等.极限风况下风力机柔性部件动力学响应研究[J].机械强度,2014,36(5):728-733.WU Pan,LI Chun,LI ZhiMin,et al.Dynamic characteristics simulation of the wind turbine with different wind and control strategy [J].Journal of Mechanical Strength,2014,36(5):728-733(In Chinese).
    [15] Wolf J P.Spring‐dashpot‐mass models for foundation vibrations [J].Earthquake Engineering and Structural Dynamics,1997,26(9):931-949.
    [16] 曹必锋,衣传宝.风力机塔架在风—地震作用下的动力响应[J].噪声与振动控制,2014,34(4):205-208.CAO BiFeng,YI ChuanBao.Dynamic response analysis of wind turbine towers under wind and earthquake combined loadings [J].Noise and Vibration control,2014,34(4):205-208(In Chinese).
    [17] 中华人名共和国住房和城乡建设部.建筑抗震设计规范[S].中华人民共和国国家标准,GB 50011-2010,2010:5-25.Ministry of Housing and Urban - Rural Development of the People's Republic of China.Code for seismic design of buildings [S].National Standard of the People’s Republic of China,GB 50011-2010,2010:5-25(In Chinese).
    [18] Al Atik L,Abrahamson N.An improved method for nonstationary spectral matching [J].Earthquake Spectra,2010,26(3):601-617.
    [19] Burton T,Sharpe D,Jenkins N,et al.Wind energy handbook [M].John Wiley & Sons,2001:22-30.
    [20] Germanischer Lloyd.Guideline for the certification of wind turbines [M].Hamburg:Germanischer Lloyd,2010.
    [21] Jonkman J,Butterfield S,Musial W,et al.Definition of a 5 MW reference wind turbine for offshore system development[R].National Renewable Energy Laboratory,2009,NREL/TP 500-38060.
    [22] 滕军.结构振动控制的理论、技术和方法[M].北京:科学出版社,2009:163-206.TENG Jun.Theory,techniques and methods of structural vibration control [M].Beijing:Science Press,2009:163-206(In Chinese).
    [23] 王肇民.高耸结构振动控制[M].上海:同济大学出版社,1997:118-128.WANG ZhaoMin.Vibration control of high rise structure [M].Shanghai:Tongji University Press,1997:118-128(In Chinese).
    [24] 杨阳,李春,袁全勇,等.地震作用下风力机时频域动态响应特性分析[J].振动与冲击,2017,36(18):245-251.YANG Yang,LI Chun,YUAN QuanYong,et al.Analysis of Dynamic Response Characteristics in Time-Frequency Domain of Wind Turbine on Earthquake Loading [J].Journal of Vibration and Shock,2017,36(18):245-251(In Chinese).
    [25] 秦荣.高层与超高层建筑结构[M].北京:科学出版社,2007:614-626.QIN Rong.High-rise and super high-rise building structure [M].Beijing:Science Press,2007:614-626(In Chinese).
    [26] Lackner M A,Rotea M A.Passive structural control of offshore wind turbines [J].Wind Energy,2011,14(3):373-388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700