碳源对花鳗鲡养殖系统水质及生产性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of addition of carbon sources on water quality in farming tanks and production performance in marbled eel Anguilla marmorata
  • 作者:唐肖峰 ; 刘利平 ; 帅滇 ; 张利娜
  • 英文作者:TANG Xiao-feng;LIU Li-ping;SHUAI Dian;ZHANG Li-na;Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University;
  • 关键词:花鳗鲡 ; 生物絮团 ; 水质 ; 氮磷利用率
  • 英文关键词:Anguilla marmorata;;biofloc technology;;water quality;;nitrogen and phosphorus utilization
  • 中文刊名:DLSC
  • 英文刊名:Journal of Dalian Ocean University
  • 机构:上海海洋大学农业农村部淡水水产种质资源重点实验室;
  • 出版日期:2019-01-30 17:25
  • 出版单位:大连海洋大学学报
  • 年:2019
  • 期:v.34
  • 基金:上海市科技委员会资助项目(13320502200);; 上海市农委科技攻关项目(沪农科攻字2013第2-2号)
  • 语种:中文;
  • 页:DLSC201901011
  • 页数:10
  • CN:01
  • ISSN:21-1575/S
  • 分类号:73-82
摘要
为探究碳源对花鳗鲡Anguilla marmorata养殖系统内水质及生产性能的影响,利用生物絮团技术在12个室内水泥池(3.0 m×5.0 m×1.2 m)中进行花鳗鲡—罗非鱼—蕹菜立体综合养殖试验,试验设置A(花鳗鲡单养)、B(花鳗鲡—罗非鱼—蕹菜)、C(花鳗鲡—罗非鱼—蕹菜同时添加玉米淀粉)、D(花鳗鲡—罗非鱼—蕹菜同时添加木薯淀粉)4组,其中,A、B组为非生物絮团组,C、D组为生物絮团组。试验期间不换水,仅投喂花鳗鲡商品饲料,两种淀粉的添加量为花鳗鲡实际摄食量的75%,此时碳氮比为12,试验共进行78 d。结果表明:养殖水质方面,到试验结束时,生物絮团组在总氮、总磷、三态氮方面均显著低于单养组(P<0.05);养殖期间,各组氨氮和亚硝酸氮含量变化剧烈,无明显规律,叶绿素a含量随养殖水温的变化呈先升高后降低的趋势,COD含量随生物絮团形成量起伏变化;絮体体积形成量与总悬浮颗粒(TSS)变化规律一致;试验结束时,D组絮团蛋白质含量最高(23.68%),与C组无显著性差异(P>0.05),但二者均显著高于非絮团组A、B (P<0.05);絮团组C的氮、磷利用率分别为31.43%、14.14%,D组氮、磷利用率分别为28.04%、13.69%,二者均显著高于非絮团组A(18.43%,9.23%)和B(19.91%,8.42%);生物絮团组(C、D)在花鳗鲡生物量、终末平均体质量、特定生长率方面均显著高于非絮团组(A、B)(P<0.05),在饵料系数方面显著低于花鳗鲡单养组(A)(P<0.05),但絮团组间无显著性差异(P>0.05),综合养殖组(B、C、D)在花鳗鲡生长性能方面均优于花鳗鲡单养组(A)。研究表明,在花鳗鲡综合养殖系统中,添加有机碳源能够显著改善养殖水环境,提升花鳗鲡生长性能及对饲料中氮磷的利用率。
        A 78-days feeding trial of polyculture of marbled eel Anguilla marmorata, tilapia Oreochromis niloticus and water spinach Ipomoea aquatica was conducted in 12 indoor cement tanks of each 3.0 m×5.0 m×1.2 m by supplement with cassava starch and corn starch using biological floc technology to assess the effect of addition of carbon source on water quality in culture tanks and production performance in marbled eel. Marbled eel juveniles with body weight of 141.5 g were monocultured at a stocking density of 8 individuals/m~2 as a control(group A) and polycultured with tilapia with body weight of 74.5 g at a density of 8 individuals/m~2 and water spinach water at a biomass of 200 g/m~2 without starch supplementation(group B) and with corn starch supplementation(group C) and with cassava starch supplementation(group D). During the experiment the marbled eel were fed commercial feed twice a day with organic carbon sources at a dose of 75% of feed intake by marbled eel, and C/N ratio of 12, without water exchange. The results showed that there were significantly lower concentrations of total nitrogen(TN), total phosphorus(TP), NO_2~--N, and NH_4~+-N in water in the polyculture ponds with starch supplementation than those in the control tank(P<0.05) at the end of the experiment. During the experiment, great fluctuation of NO_2~--N, and NH_4~+-N levels were observed among various groups, without regular pattern, and the concentration of chlorophyll a was found to be increased first and then decreased with change in water temperature. The COD levels were changed with amount of biofloc which was consistent with the change in total suspended particle levels. The maximal protein content in biofloc was found in group D(23.68%), without significant difference from group C(21.88%)(P>0.05), significantly higher than those in groups A(17.33%) and B(16.89%)(P<0.05). There were significantly higher utilization coefficients of nitrogen and phosphorous in group C(31.43% and 14.14%) and group D(28.08% and 13.69%) that those in group A(18.43% and 9.23%) and group B(19.91% and 8.42%). Marbled eel had biomass of 30.51 kg/pond in group C, and 30.09 kg/pond in group D, significantly higher than the fish in group A(26.43 kg/pond) and group B(27.45 kg/pond) did(P<0.05), with the similar case in average body weight(225.86 g and 234.62 g), specific growth rate(0.60%/d and 0.62%/d), and weight gain rate(55.63% and 61.67%). There was lower food conversion ratio in group C(1.87), and group D(1.57) were than A(2.32), without significantly difference groups C and D(P>0.05). The findings indicate that supplementation with organic carbon source in system of marbled eel, tilapia and water spinach improves water quality and biomass of aquatic organisms.
引文
[1] 闵志勇.花鳗鲡和日本鳗鲡肌肉生化成分的比较研究[J].集美大学学报,1998,3(3):132-135.
    [2] 罗鸣钟,关瑞章,靳恒.五种鳗鲡的含肉率及肌肉营养成分分析[J].水生生物学报,2015,39(4):714-722.
    [3] 葛均青,杨金先,李友娟,等.鳗鲡病毒性疾病病料中鳗鲡疱疹病毒的PCR检测[J].福建农业学报,2012,27(9):961-964.
    [4] De Schryver P,Crab R,Defoirdt T,et al.The basics of bio-flocs technology:the added value for aquaculture[J].Aquaculture,2008,277(3-4):125-137.
    [5] Crab R,Avnimelech Y,Defoirdt T,et al.Nitrogen removal techniques in aquaculture for a sustainable production[J].Aquaculture,2007,270(1-4):1-14.
    [6] Schneider O,Sereti V,Eding E H,et al.Analysis of nutrient flows in integrated intensive aquaculture systems[J].Aquacultural Engineering,2005,32(3-4):379-401.
    [7] Crab R,Kochva M,Verstraete W,et al.Bio-flocs technology application in over-wintering of tilapia[J].Aquacultural Engineering,2009,40(3):105-112.
    [8] Hargreaves J A.Photosynthetic suspended-growth systems in aquaculture[J].Aquacultural Engineering,2006,34(3):344-363.
    [9] Ballester E L C,Abreu P C,Cavalli R O,et al.Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system[J].Aquaculture Nutrition,2010,16(2):163-172.
    [10] Furtado P S,Poersch L H,Wasielesky Jr W.Effect of calcium hydroxide,carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems[J].Aquaculture,2011,321(1-2):130-135.
    [11] 王潮辉,高启,谭洪新,等.生物絮凝系统构建过程对吉富罗非鱼免疫酶和生长的影响[J].中国水产科学,2015,22(4):707-715.
    [12] 杨章武,张哲,葛辉,等.几种不同碳源对凡纳滨对虾生物絮团技术育苗效果的影响[J].福建水产,2015,37(5):347-352.
    [13] 卢炳国,王海英,谢骏,等.不同C/N水平对草鱼池生物絮团的形成及其水质的影响[J].水产学报,2013,37(8):1220-1228.
    [14] 江晓浚,孙盛明,戈贤平,等.添加不同碳源对零换水养殖系统中团头鲂鱼种生长、肠道生化指标和水质的影响[J].水产学报,2014,38(8):1113-1122.
    [15] Goldman J C,Caron D A,Dennett M R.Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio[J].Limnology and Oceanography,1987,32(6):1239-1252.
    [16] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [17] AOAC.Official Methods of Analysis[M].18th ed.Maryland:AOAC International Gaithersburg,2005.
    [18] Wilén B M,Nielsen J L,Keiding K,et al.Influence of microbial activity on the stability of activated sludge flocs[J].Colloids and Surfaces B:Biointerfaces,2000,18(2):145-156.
    [19] 李育培,权衡,盛晓洒,等.花鳗鲡的生物学特性及人工养殖技术[J].渔业致富指南,2008(10):50-52.
    [20] Luo Mingzhong,Guan Ruizhang,Li Zhonhqin,et al.The effects of water temperature on the survival,feeding,and growth of the juveniles of Anguilla marmorata and Abicolor pacifica[J].Aquaculture,2013,400-401:61-64.
    [21] 李先宁,宋海亮,吕锡武,等.水耕植物过滤法去除氮磷的影响因素及途径[J].环境科学,2007,28(5):982-986.
    [22] 陈家长,孟顺龙,胡庚东,等.空心菜浮床栽培对集约化养殖鱼塘水质的影响[J].生态与农村环境学报,2010,26(2):155-159.
    [23] Avnimelech Y.Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds[J].Aquaculture,2007,264(1-4):140-147.
    [24] 李波.氨氮和亚硝酸盐对黄颡鱼的毒性研究[D].武汉:华中农业大学,2010.
    [25] 运珞珈,李谷,刘志伟,等.稚鳖养殖水体中异养细菌及自养细菌的初步研究[J].同济医科大学学报,2000,29(5):397-399.
    [26] 尹文林,沈锦玉,潘晓艺,等.复合硝化菌制剂对水质改良的应用效果[J].水产养殖,2010,31(9):12-17.
    [27] Emerenciano M,Ballester E L C,Cavalli R O,et al.Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis:growth performance,floc composition and salinity stress tolerance[J].Aquaculture International,2011,19(5):891-901.
    [28] Crab R,Chielens B,Wille M,et al.The effect of different carbon sources on the nutritional value of bioflocs,a feed for Macrobrachium rosenbergii postlarvae[J].Aquaculture Research,2010,41(4):559-567.
    [29] Samocha T M,Patnaik S,Speed M,et al.Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei[J].Aquacultural Engineering,2007,36(2):184-191.
    [30] Burford M A,Thompson P J,Mcintosh R P,et al.The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity,zero-exchange system[J].Aquaculture,2004,232(1-4):525-537.
    [31] Green B W,Boyd C E.Chemical budgets for organically fertilized fish ponds in the dry tropics[J].Journal of the World Aquaculture Society,1995,26(3):284-296.
    [32] 高攀,蒋明,赵宇江,等.主养草鱼池塘水质指标的变化规律和氮磷收支[J].云南农业大学学报,2009,24(1):71-77.
    [33] Rosenthal H,Bradburg N B.Internationalaqua-Culture:Trends and Perspective[M].Ghent (Belgium):European Aquaculture Society Special Publication,1995.
    [34] Rahman M M,Jo Q,Gong Y G,et al.A comparative study of common carp (Cyprinus carpio L.) and calbasu (Labeo calbasu Hamilton) on bottom soil resuspension,water quality,nutrient accumulations,food intake and growth of fish in simulated rohu (Labeo rohita Hamilton) ponds[J].Aquaculture,2008,285(1-4):78-83.
    [35] 罗文,王广军,龚望宝,等.生物絮团技术对彭泽鲫生长及养殖水质的影响[J].南方农业学报,2014,45(2):318-322.
    [36] 李朝兵,李志斐,韩林强,等.生物絮团技术对室内培育小规格罗非鱼种的影响[J].水产养殖,2015,36(7):29-35.
    [37] 邓应能,赵培,孙运忠,等.生物絮团在凡纳滨对虾封闭养殖试验中的形成条件及作用效果[J].渔业科学进展,2012,33(2):69-75.
    [38] 赵培.生物絮团技术在海水养殖中的研究与应用[D].上海:上海海洋大学,2011.
    [39] Hari B,Kurup B M,Varghese J T,et al.Effects of carbohydrate addition on production in extensive shrimp culture systems[J].Aquaculture,2004,241(1-4):179-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700