新型一体化A~2/O-MBR的流速与溶解氧分布及脱氮除磷研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE DISTRIBUTION CHARACTERISTICS OF VELOCITY AND DISSOLVED OXYGEN IN A NOVEL INTEGRATED A~2/O-MBR PROCESS FOR NITROGEN AND PHOSPHORUS REMOVAL
  • 作者:诸刚 ; 赵曙光 ; 张江英 ; 姜志琛
  • 英文作者:ZHU Gang;ZHAO Shu-guang;ZHANG Jiang-ying;JIANG Zhi-chen;School of Mechanical and Electrical Engineering,Beijing Vocational College of Agriculture;Poten Environment Group Co.,Ltd;Anhui Guozhen Environment Remediation Co.,Ltd;
  • 关键词:一体化 ; MBR ; CFD模拟 ; 流速分布 ; 溶解氧分布
  • 英文关键词:integration;;MBR;;CFD simulaton;;flow velocity distribution;;dissolved oxygen distribution
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:北京农业职业学院机电工程学院;博天环境集团股份有限公司;安徽国祯环境修复股份有限公司;
  • 出版日期:2018-05-22
  • 出版单位:环境工程
  • 年:2018
  • 期:v.36;No.239
  • 基金:北京市教育委员会科技计划资助项目“新型农村污水处理装置——一体化A2/O-MBR反应器研究”(KM201512448008);; 博天环境集团研发基金项目“新型厌兼氧MBR膜组件及设备开发”(YA-2016-006)
  • 语种:中文;
  • 页:HJGC201805005
  • 页数:6
  • CN:05
  • ISSN:11-2097/X
  • 分类号:26-30+58
摘要
新型一体化A~2/O-MBR反应器是通过在普通曝气池内加装气水混合流聚集器,将反应池分隔成不同反应区(厌氧/缺氧/好氧)而成。利用计算流体力学(CFD)技术,对2种构型的一体化A~2/O-MBR反应器内流体流速分布进行模拟。通过构建实验系统,实测系统内实际流体流速与不同污泥浓度下DO的分布特征,并考察脱氮除磷效果。结果表明:CFD模拟结果与实测反应器的流体流速分布基本一致;上升区与下降区宽度比为1∶5的反应器流速CFD模拟值较1∶2更优;加装气水混合流聚集器可使曝气能耗降低50%以上;通过变量曝气与控制上升区和下降区的污泥回流量,反应器上升区与下降区可分别形成好氧区与缺氧/厌氧区;系统脱氮除磷效率分别达到40%~60%和75%~90%,出水ρ(TN)、ρ(TP)分别低于12,0.2 mg/L。新型一体化A~2/O-MBR反应器具有能耗低、脱氮除磷能力强、构型设计新颖和实用性强等优点。
        A novel integrated A~2/O-MBR innovated in this study was a reactor that was separated the different reaction zones( anaerobic/anoxic/aerobic) by a buffer used for gas-liquid energy accumulation. Using the computational fluid dynamics( CFD) technology,the distribution characteristics of flow velocity in the two configurations of integrated A~2/O-MBR process with the width ratios of the upflow and downflow zones of 1/5 and 1/2 were simulated. By estabilishing a integrated A~2/OMBR setup,the distribution characteristics of the flow velocity and dissolved oxygen( DO) in system were measured,and the nitrogen and phosphorus removal capacities were investigated. The results showed that CFD simulation matched the experimental data very well. The flow field at a riser/downcomer width ratio of 1/5 was recongnised better than that of 1/2.The energy consumption could be reduced by up to 50% by adopting the gas-liquid energy accumulation. An obvious anaerobic/anoxic/oxic zones were formed by applying the intermittent aeration strategy and controlling the recirculation ratio between the riser and the downcomer. Under these conditions,the removal rates of total nitrogen,total phosphorus were 40% ~ 60% and 75% ~ 90%,the effluent TN、TP concentration were below of 12,0. 2 mg/L,respectively. This new configuration of integrated A~2/O-MBR has the advantages of low energy consumption,high nitrogen and phosphorus removalcapacities,novel configuration design,strong practicability,etc.
引文
[1]杨敏,徐荣乐,袁星,等.膜生物反应器ASM-CFD耦合仿真研究进展[J].膜科学与技术,2015(6):126-133.
    [2]刘百仓,马军,张立秋,等.计算流体动力学在膜技术中的应用[J].中国农村水利水电,2008(1):40-44.
    [3]Ghidossi R,Veyret D,Moulin P.Computational fluid dynamics applied to membranes:State of the art and opportunities[J].Chemical Engineering and Processing,2006,45(6):437-454.
    [4]Brannock M WD,de Wever H,Wang Y,et al.Computational fluid dynamics simulations of MBRs:Inside submerged versus outside submerged membranes[J].Desalination,2009,236(1/2/3):244-251.
    [5]Saalbach M H.CFD analysis of MBR-UNITS,recommendations for system design and operation[Z].Berlin:2009:221-229.
    [6]Brannock W D,Hw Y W,Leslie G.Evaluation of membrane bioreactor performance via computational fluid dynamics modeling:Effect of membrane configuration and mixing[Z].UK:2007.
    [7]Nicolas R I N M W.Modeling hydrodynamics in MBR systems using computational fluid dynamics[Z].2008.
    [8]Jankhah P B C C.How fouling in submerged hollow fiber membranes is related to surface shear forces[Z].Ghent:2008,26-37.
    [9]韩杰,朱彤,黄永刚,等.浸没板式膜生物反应器中流体运动的数值模拟[J].化学与生物工程,2008,25(11):44-47.
    [10]Drews A,Prieske H,Kraume M.Optimierung der blasen-und zirkulationsstr9mung in membranbelebungsreaktoren[J].Chemie Ingenieur Technik,2008,80(12):1795-1801.
    [11]Khalili-Garakani A,Mehrnia M R,Mostoufi N,et al.Analyze and control fouling in an airlift membrane bioreactor:CFD simulation and experimental studies[J].Process Biochemistry,2011,46(5):1138-1145.
    [12]Liu W,Jordan E,Kippax V,et al.Using computational fluid dynamics(CFD)and particle image velocimetry(PIV)to characterize air and water two phase plug flow membrane clean system[J].Proceedings of the Water Environment Federation,2009(14):2798-2811.
    [13]张晴,樊耀波,魏源送,等.气升循环分体式MBR的CFD模拟及优化[J].膜科学与技术,2013(4):107-119.
    [14]袁星,杨敏,罗南,等.一体式A2/O-MBR内的DO分布模拟及影响因素研究[J].膜科学与技术,2016,36(1):61-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700