用户名: 密码: 验证码:
记及压应力的内聚力单元及其厚度对复合材料分层损伤预测的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE INFLUENCES OF COHESIVE ELEMENT COMPRESSIVE STRESS AND ITS THICKNESS ON DELAMINATION PREDICTION OF COMPOSITE
  • 作者:郭双喜 ; 李雪芹
  • 英文作者:GUO Shuang-xi;LI Xue-qin;AVIC Composite Technology Center,AVIC Composite Corporation Ltd.,National Key Laboratory of Advanced Composites;
  • 关键词:分层 ; 内聚力单元 ; 单元厚度 ; 冲击 ; 损伤面积 ; 破坏模式
  • 英文关键词:delamination;;cohesive element;;element thickness;;impact;;damage area;;failure mode
  • 中文刊名:BLGF
  • 英文刊名:Fiber Reinforced Plastics/Composites
  • 机构:航空工业复合材料技术中心中航复合材料有限责任公司先进复合材料重点实验室;
  • 出版日期:2019-02-26
  • 出版单位:玻璃钢/复合材料
  • 年:2019
  • 期:No.301
  • 基金:国家重点研发计划资助项目(2017YFB0703300);; 973项目(613245)
  • 语种:中文;
  • 页:BLGF201902003
  • 页数:6
  • CN:02
  • ISSN:11-2168/TU
  • 分类号:22-27
摘要
内聚力单元可以同时预测分层的起始和扩展,但单元尺寸对计算结果影响较大,而且无法模拟压应力导致的界面失效。首先,建立不同内聚力单元计算厚度的双悬臂梁模型、端边加载模型和冲击动力学模型,模拟分层损伤演化过程,研究内聚力单元厚度对载荷-位移曲线和界面损伤面积的影响;然后,通过子程序自定义内聚力单元的本构关系,考虑压缩应力引起的复合材料层间界面失效;最后,分析考虑压应力引起的界面层失效对复合材料冲击响应的影响。计算结果表明:内聚力单元厚度对界面层的损伤面积影响明显;相同的载荷条件下,内聚力单元厚度越大,界面损伤面积越小;考虑压缩应力引起的界面层失效,界面损伤面积较大且界面失效包含压缩和剪切两种失效模式。
        To model the delamination initiation and propagation of the composite laminates,the cohesive element is often used. But,unfortunately,the numerical result may depend on element size,and it can't model the interface failure caused by large compressive stress. Firstly,three models with different thickness of the cohesive element,i.e. the double cantilever beam model,the end-loaded split model and the dynamic impact model,are established to simulate the delamination evolution of the composite. The influences of the cohesive element thickness on the load-displacement curve and interface damage area are studied. Then,the constitutive relation of cohesive element is defined by the subroutine to consider the interface failure caused by compressive stress,and the impact of interface failure caused by compressive stress during impact response of composites is analyzed. The results show that the thickness of cohesive element has a significant influence on the interface damage area. Under conditions of the same loading,the damage area of the interface becomes smaller as the cohesive element thickness becomes larger. With the consideration of the interface layer failure caused by compressive stress,the interface damage area would be larger and the interface modes contains compression failure and shear failure.
引文
[1] Zobeiry N,Vaziri R,Poursartip A. Characterization of strainsoftening behavior and failure mechanisms of composites under tension and compression[J]. Composites Part A,2015,68:29-41.
    [2]Green B G,Wisnom M R,Hallett S R. An experimental investigation into the tensile strength scaling of notched composites[J]. Composites:Part A Applied Science&Manufacturing,2007,38(3):867-878.
    [3]Gong W,Chen J,Patterson E A. An experimental study of the behaviour of delaminations in composite panels subjected to bending[J]. Composite Structures,2015,123(123):9-18.
    [4]Shanmugam V,Penmetsa R,Tuegel E,et al. Stochastic modeling of delamination growth in unidirectional composite DCB specimens using cohesive zone models[J]. Composite Structures,2013,102(4):38-60.
    [5]Davijani A B,Hajikhani M,Ahmadi M. Acoustic emission based on sentry function to monitor the initiation of delamination in composite materials[J]. Materials&Design,2011,32(5):3059-3065.
    [6]Shor O,Vaziri R. Adaptive insertion of cohesive elements for simulation of delamination in laminated composite materials[J]. Engineering Fracture Mechanics,2015,146:121-138.
    [7]Murri G B. Effect of data reduction and fiber-bridging on mode I delamination characterization of unidirectional composites[J]. Journal of Composite Materials,2011,48(19):2413-2424.
    [8]Xu Qiang,Lu Zixing. An elastic-plastic cohesive zone model for metal-ceramic interfaces at finite deformations[J]. International Journal of Plasticity,2013,41(2):147-164.
    [9]Caputo F,De Luca A,Lamanna G,et al. Numerical study for the structural analysis of composite laminates subjected to low velocity impact[J]. Composites Part B:Engineering,2014,67:296-302.
    [10]肖梦丽,张勇波,王治华,等.分层损伤对含孔复合材料层合板剩余强度影响[J].航空动力学报,2016,31(5):1081-1086.
    [11]喻溅鉴,周储伟.复合材料疲劳分层的界面单元模型[J].复合材料学报,2009,26(6):167-172.
    [12]陈丽华,徐元铭,刘博.复合材料分层问题中界面层方法的数值研究[J].复合材料学报,2010,27(3):144-149.
    [13]Harper P W,Sun L,Hallett S R. A study on the influence of cohesive zone interface element strength parameters on mixed mode behaviour[J]. Composites:Part A Applied Science&Manufacturing,2012,43(4):722-734.
    [14]Chen J,Crisfield M,Kinloch A J,et al. Predicting progressive delamination of composite material specimens via interface elements[J]. Mechanics of Composite Materials&Structures,1999,6(4):301-317.
    [15]Zhang J,Zhang X. Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact[J]. Composite Structures,2015,125:51-57.
    [16]Turon A,Camanho P P,Costa J,et al. A damage model for the simulation of delamination in advanced composites under variablemode loading[J]. Mechanics of Materials,2006,38(11):1072-1089.
    [17]Liu P F,Islam M M. A nonlinear cohesive model for mixed-mode delamination of composite laminates[J]. Composite Structures,2013,106:47-56.
    [18]姚振华,李亚智,刘向东,等.复合材料层合板低速冲击后剩余压缩强度研究[J].西北工业大学学报,2012,30(4):518-523.
    [19]Zhang J,Zhang X. Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact[J]. Composite Structures,2015,125:51-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700