光纤光栅应用于石蜡内部结构的特性监测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of fiber bragg grating in the monitoring of the internal structure of paraffin
  • 作者:杨裴裴 ; 宋清澈 ; 安永泉 ; 王冠军 ; 王志斌 ; 王高
  • 英文作者:YANG Peipei;SONG Qingche;AN Yongquan;WANG Gaunjun;WANG Zhibin;WANG Gao;Shanxi Provincial Research Center for Opto-electronic Information and Instrument Engineering Technology, North University of China;Collage of Information Science & Technology, Hainan University;Science and Technology on Electronic Test & Measurement Laboratory, North University of China;College of Information and Communication Engineering, North University of China;
  • 关键词:光纤光栅 ; 石蜡 ; 应变传感 ; 温度传感
  • 英文关键词:fiber bragg grating;;paraffin wax;;strain sensing;;temperature sensing
  • 中文刊名:GXJS
  • 英文刊名:Optical Technique
  • 机构:中北大学山西省光电信息与仪器工程技术研究中心;海南大学信息科学技术学院;中北大学仪器科学与动态测试教育部重点实验室;中北大学电子测试技术国防重点验室;
  • 出版日期:2019-03-15
  • 出版单位:光学技术
  • 年:2019
  • 期:v.45;No.256
  • 基金:国家自然科学基金(61405127);; 国家重点研发计划重点专项子课题(20116YFC0101603)
  • 语种:中文;
  • 页:GXJS201902009
  • 页数:5
  • CN:02
  • ISSN:11-1879/O4
  • 分类号:51-55
摘要
石蜡材料在造型及涂敷过程中,长时间处于熔融状态,与空气接触易氧化变质。为了准确研究石蜡内部结构,利用光纤光栅传感器体积小、外形可变且易于埋入结构内部等特点,设计了基于光纤光栅的石蜡熔-固态温度/应变无损监测系统。实验结果表明,石蜡内部温度从90℃下降至40℃左右时,应变仅改变170με;从40℃下降至25℃时,100min内应变改变750με,并且温度和应变呈线性关系。
        Paraffin wax materials are in melting state for a long time in the process of molding and coating. It is easy to oxidize and deteriorate in contact with air. In order to study the internal structure of paraffin wax accurately, a non-destructive temperature/strain monitoring system for melting-solid state of paraffin wax based on fiber bragg grating(FBG) is designed by using the characteristics of small volume, changeable shape and easy embedding in the structure. The experimental results show that the strain changes only 170με when the internal temperature of paraffin wax decreases from 90℃ to 40℃; The strain changes by 750με in 100 minutes when the temperature decreases from 40℃ to 25℃, and the temperature and strain show a linear relationship.
引文
[1] 王林,金秀英,吴伟,等. 微晶蜡和聚乙烯蜡对石蜡性能改进研究[J]. 当代化工,2018,47(7):1384—1386. Wang Lin, Jin Xiuying, Wu Wei, et al. Study on the improvement of paraffin performance by microcrystalline wax and polyethylene wax [J]. Contemporary Chemical Engineering,2018,47(7):1384—1386.
    [2] 李得伦. 石蜡相变材料的传热与控温性能研究[D]. 广东:华南理工大学,2012.Li Delun. Heat transfer and temperature control performance of paraffin phase change materials[D]. South China University of Technology,2012.
    [3] 廖克俭, 张玲, 丛玉凤, 等. 催化氧化法制备硬质氧化蜡[J]. 辽宁石油化工大学学报,2008,28(4):24—26. Liao Kejian, Zhang Ling, Cong Yufeng, et al. Preparation of hard oxidized wax by catalytic oxidation method[J]. Journal of Liaoning University of Petrochemical Technology,2008,28(4):24—26.
    [4] 陈兵芽. 石蜡热力学特性及其无缆驱动器研究[D]. 江西:南昌大学,2008.Chen Bingya. Thermodynamic characteristics of paraffin and its no cable driver research [D]. Jiangxi: Nanchang University,2008.
    [5] Krupa I, Luyt A S. Physical properties of blends of LLDPE and an oxidized paraffin wax[J]. Polymer,2001,42:7285.
    [6] Nardello V, Chailloux N, Poprawski J. HLD concept as a tool for the characterization of cosmetic hydrocarbon oi1s[J].Polymer International,2003,52(4):602—603.
    [7] Marek Z, Horn R G, Shaw N. AFM study of paraffin wax surfaces [J]. Colloids and Surfaces A: Phvsicochem,2006,287:139—140.
    [8] Zheng M J, Du W M. Phase behavior, conformations, thermodynamic properties,and molecular motion of multicomponent paraffin waxes: A Raman spectroscopy study[J]. Vibrational Spectroscopy,2006,40: 219—221.
    [9] 舒正伟. 石蜡的耐热性能及其机理研究[D]. 四川:成都理工大学2010. Shu Zhengwei. Study on heat resistance and mechanism of paraffinwax [D]. Sichuan:Chengdu University of Technology,2010.
    [10] Li K W, Zhao F, Fu H. SHPB technique for the dynamic stress-strain curve mesurements of casting explosive[J]. Explosion and Shock Waves,2015,35(6):846—851.
    [11] 薛渊泽, 王学锋, 罗明明, 等. 再生光纤布拉格光栅的研究进展[J].激光与光电子学进展.2018,55(2):69—78.Xue Yuanze, Wang Xuefeng, Luo Mingming, et al. Research progress of regenerated fiber Bragg gratings[J]. Progress in Laser and Optoelectronics,2018,55(2):69—78.
    [12] 匡泽远. 基于双频光纤光栅激光器的多普勒测速仪应用研究[D].广东:暨南大学,2016.Kuang Zeyuan. Application research of doppler velocity based on dual-frequency fiber bragg grating laser[D]. Guangdong:Jinan University,2016.
    [13] Polz L, Hopf B, Jarsen A, et al. Regenerated bragg gratings in panda fibers for simultaneous temperature and force measurements at high temperatures[J]. Journal of Lightwave Technology,2016,34(19):4550 —4556.
    [14] 覃荷瑛, 沈全喜, 钟英杰. 基于光纤光栅传感器的大应变碳纤维板应力监测研究[J]. 铁道建筑,2018,58(4):54—56. Tan Heying, Shen Quanxi, Zhong Yingjie. Research on stress monitoring of large strain carbon fiber board based on fiber bragg grating sensor[J]. Railway Construction,2018,58(4):54—56.
    [15] 谭跃刚, 陈宇佳, 李瑞亚, 等. 高精度弓形光纤光栅微位移传感器[J]. 光学精密工程,2018,26(3):557—564.Tan Yuegang, Chen Yujia, Li Ruiya, et al. High-precision bow-shaped fiber grating micro-displacement sensor[J]. Optical Precision Engineering,2018,26(3):557—564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700