脂质立方液晶作为药物载体的靶向作用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advancesin Cubosomes to Targeted Therapy as Drug Delivery System
  • 作者:杨杰 ; 田兰 ; 柴东坤 ; 林浪 ; 刘云杰 ; 杨艳 ; 支慧 ; 郑小波 ; 封海波
  • 英文作者:YANG Jie;TIAN Lan;CHAI Dong-kun;LIN Lang;LIU Yun-jie;YANG Yan;ZHI Hui;ZHENG Xiao-bo;FENG Hai-bo;College of Animal Science,Southwest University;
  • 关键词:脂质立方液晶 ; 载药体 ; 靶向
  • 英文关键词:cubosome;;drug delivery system;;target
  • 中文刊名:ZSYY
  • 英文刊名:Chinese Journal of Veterinary Drug
  • 机构:西南大学动物科学学院;
  • 出版日期:2019-07-20
  • 出版单位:中国兽药杂志
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金面上项目(31872511)
  • 语种:中文;
  • 页:ZSYY201907012
  • 页数:7
  • CN:07
  • ISSN:11-2820/S
  • 分类号:82-88
摘要
从脂质立方液晶的结构特点与制备工艺入手介绍了脂质立方液晶作为载药体的各项优势,重点对脂质立方液晶载药体靶向作用的应用进行归纳,分析其作为载药体靶向作用的优点,总结其存在的问题,为进一步开发靶向作用更强的脂质立方液晶载药体提供参考。
        This review introduced the cubosomes structural characteristics and preparation technology as a drug delivery system and the focus of all the advantages of cubosomes targeting drug-delivery system. The advantages as drug-delivery system were mainly analyzed and the problems were summarized,which can provide reference for further development of cubosomes targeting drug-delivery system.
引文
[1] Mo J,Milleret G,Nagaraj M. Liquid crystal nanoparticles for commercial drug delivery[J]. Liquid Crystals Reviews,2017,5(2):69-85.
    [2] Andrienko D. Introduction to liquid crystals[J]. Journal of Molecular Liquids,2018,7(4):1-24.
    [3] Ingo D,Shakhawan A Z. Lyotropic liquid crystal phases from anisotropic nanomaterials[J]. Nanomaterials,2017,7(10):1-28.
    [4] Zabara A, Mezzenga R. Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases[J]. Journal of Controlled Release,2014,188:31-43.
    [5] Wadsten-Hindrichsen P,Bender J,Unga J,et al. Aqueous selfassembly of phytantriol in ternary systems:Effect of monoolein,distearoylphosphatidylglycerol and three water-miscible solvents[J]. J Colloid Interface Sci,2007,315(2):701-713.
    [6] Younus M,Hawley A,Boyd B J,et al. Bulk and dispersed aqueous behaviour of an endogenous lipid, selachyl alcohol:Effect of Tween 80 and Pluronic F127 on nanostructure[J].Colloids&Surfaces B Biointerfaces,2018,169:135-142.
    [7] Rama P,Stefan S. Temperature triggering of kinetically trapped self-assemblies in citremphospholipid nanoparticles[J].Chemistry and Physics of Lipids,2018,216:30-38.
    [8] Spicer P T. Progress in liquid crystalline dispersions:Cubosomes[J]. Current Opinion in Colloids and Interface Science,2005,10(5/6):274-279.
    [9] Siekmann B,Bunjes H,Koch M H J,et al. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases[J]. International Journal of Pharmaceutics(Kidlington),2002,244(1/2):33-43.
    [10] Vinod K R, Sravya K, Sandhya S, et al. Tailoring active compounds across biological membranes by cubosomal technology:an updated review[J]. Journal of Chinese Pharmaceutical Sciences,2013,22(4):303-313.
    [11] Mezzenga R,Meyer C,Servais C,et al. Shear rheology of lyotropic liquid crystals:a case study[J]. Langmuir,2005,21(8):3322-3333.
    [12] Spicer P T,Small W B,Small W B,et al. Dry powder precursors of cubic liquid crystalline nanoparticles(cubosomes)[J]. Journal of Nanoparticle Research,2002,4(4):297-311.
    [13] Yosra E,Samar E,Doaa A,et al. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’ s disease:pharmaceutical,biological,and toxicological studies[J]. International Journal of Nanomedicine,2015,10:5459-5473.
    [14] Mansour M,Kamel A O,Mansour S,et al. Novel polyglyceroldioleate based cubosomal dispersion with tailored physical characteristics for controlled delivery of ondansetron[J]. Colloids and Surfaces B:Biointerfaces,2017,156:44-54.
    [15] Lian R,Lu Y,Qi J,et al. Silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices:physical characterization and enhanced oral bioavailability[J]. Aaps Pharmscitech,2011,12(4):1234-1240.
    [16] Hojun K,Jaeuk S,Yunju C,et al. Microfluidics synthesis of gene silencing cubosomes[J]. ACS Nano,2018,12(9):9196-9205.
    [17] Wei Y,Zhang J,Zheng Y,et al. Cubosomes with surface crosslinked chitosan exhibit sustained release and bioavailability enhancement for vinpocetine[J]. RSC Advances,2019,9(11):6287-6298.
    [18] Younus M,Prentice R N,Clarkson A N,et al. Incorporation of an endogenous neuromodulatory lipid,oleoylethanolamide,into cubosomes:nanostructural characterization[J]. Langmuir,2016,32(35):8942-8950.
    [19] Gazga U C,Rivera B E,Pérez H G,et al. Physicochemical characterization and thermal behavior of hexosomes containing ketoconazole as potential topical antifungal delivery system[J].Drug Development and Industrial Pharmacy, 2018, 45(1):168-176.
    [20] Patil R P,Pawara D D,Gudewar C S,et al. Nanostructured cubosomes in an in situ nasal gel system:an alternative approach for the controlled delivery of donepezil HCl to brain[J]. Journal of Liposome Research,2018,2:1-10.
    [21] Salah S,Mahmoud A A,Kamel A O. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis:ex vivo permeation and in vivo pharmacokinetic studies[J]. Drug Delivery,2017,24(1):846-856.
    [22] Reddy M S,Nagadurga N. Formulation and vitro evaluation of gastro retentive in situ floating gels of losartan potassium cubosomes[J]. Indo American Journal of Pharmaceutical Sciences,2017,4(12):4214-4225.
    [23] Maria C,Natassa P,Stergios P,et al. Cubic lyotropic liquid crystals as drug delivery carriers:Physicochemical and morphological studies[J]. International Journal of Pharmaceutics,2018,550(1/2):57-70.
    [24] Shi J,Kantoff P W,Wooster R,et al. Cancer nanomedicine:progress, challenges and opportunities[J]. Nature Reviews Cancer,2016,17(1):20-37.
    [25] Nazaruk E,Majkowska-Pilip A,Bilewicz R. Lipidic cubicphase nanoparticles-cubosomes for efficient drug delivery to cancer cells[J]. ChemPlusChem,2017,82(4):570-575.
    [26] Nasr M, Ghorab M K,Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting[J]. Acta Pharmaceutica Sinica B,2015,5(1):79-88.
    [27] Murgia S, Bonacchi S, Falchi A M, et al. Drug-loaded fluorescent cubosomes:versatile nanoparticles for potential theranostic applications[J]. Langmuir,2013,29(22):6673-6679.
    [28] Raj K T,Ju Y C,Bijay K P. Multilayer-coated liquid crystalline nanoparticles for effective sorafenib delivery to hepatocellular carcinoma[J]. ACS Applied Materials&Interfaces,2015,7(36):20360-20368.
    [29] Caltagirone C,Falchi A M,Lampis S,et al. Cancer-celltargeted theranostic cubosomes[J]. Langmuir,2014,30(21):6228-6236.
    [30] Russell-Jones G,Mctavish K,Mcewan J,et al. Vitaminmediated targeting as a potential mechanism to increase drug uptake by tumours[J]. Journal of Inorganic Biochemistry,2004,98(10):1625-1633.
    [31] Aleandri S, Bandera D, Mezzenga R, et al. Biotinylated cubosomes:a versatile tool for active targeting and co-delivery of paclitaxel and fluorescein-based lipid dye[J]. Langmuir,2015,31(46):12770-12776.
    [32] Jiali Z,Rodney L,Nuzhat A,et al. Paclitaxel-loaded selfassembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer[J]. ACS Applied Materials&Interfaces,2018,10(30):25174-25185.
    [33] Saber MM,Al-Mahallawi A M,Nassar N N,et al. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes[J]. BMC Cancer,2018,18:1-11.
    [34] Alyautdin R,Khalin I,Nafeeza M I,et al. Nanoscale drug delivery systems and the blood–brain barrier[J]. International Journal of Nanomedicine,2014,9(1):795-811.
    [35] Yosra E,Samar E,Doaa A,et al. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease:pharmaceutical,biological,and toxicological studies[J]. International Journal of Nanomedicine,2015,10:5459-5473.
    [36] Hanisah A,Mike S,Sarah H,et al. Stabilising cubosomes with Tween 80 as a step towards targeting lipid nanocarriers to the blood-brain barrier[J]. European Journal of Pharmaceutics&Biopharmaceutics,2016,104:148-155.
    [37] Ahirrao M, Shrotriya S. In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting[J]. Drug Development and Industrial Pharmacy,2017,43(10):1686-1693.
    [38] Xinsheng P, Yanfang Z, Ke H, et al. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin[J]. Drug Design, Development and Therapy,2015,9:4209-4218.
    [39] Li J C,Zhu N,Zhu J X,et al. Self-assembled cubic liquid crystalline nanoparticles for transdermal delivery of paeonol[J].Medical Science Monitor,2015,21:3298-3310.
    [40] Gan L,Han S,Shen J,et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone:Improving preocular retention and ocular bioavailability[J]. International Journal of Pharmaceutics,2010,396(1/2):179-187.
    [41] Younes N F,Abdel-Halim S A,Elassasy A I. Corneal targeted Sertaconazole nitrate loaded cubosomes:preparation,statistical optimization,in vitro characterization,ex vivo permeation and in vivo studies[J]. International Journal of Pharmaceutics,2018,553(1/2):386-397.
    [42] Huang J,Peng T,Li Y,et al. Ocular cubosome drug delivery system for timolol maleate:preparation, characterization,cytotoxicity,ex vivo,and in vivo evaluation[J]. AAPS Pharm Sci Tech,2017,18(8):2919-2926.
    [43] Liu R,Wang S,Fang S,et al. Liquid crystalline nanoparticles as an ophthalmic delivery system for tetrandrine:development,characterization, and in vitro and in vivo evaluation[J].Nanoscale Research Letters,2016,11:1-12.
    [44] Ou N,Sun Y,Zhou S,et al. Evaluation of optimum conditions for, achyranthes bidentata, polysaccharides encapsulated in cubosomes and immunological activity,in vitro[J]. International Journal of Biological Macromolecules,2017,109:748-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700