高超声速推进再生冷却研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on Regenerative Cooling Technology of Hypersonic Propulsion
  • 作者:章思龙 ; 秦江 ; 周伟星 ; 鲍文
  • 英文作者:ZHANG Si-long;QIN Jiang;ZHOU Wei-xing;BAO Wen;School of Energy Science and Engineering,Harbin Institute of Technology;
  • 关键词:再生冷却 ; 高超声速推进 ; 冷源不足 ; 化学反应流动 ; 热沉提升 ; 综述
  • 英文关键词:Regenerative cooling;;Hypersonic propulsion;;Insufficient cooling capacity;;Chemical reacting flow;;Cooling capacity improvement;;Review
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:哈尔滨工业大学能源科学与工程学院;
  • 出版日期:2018-09-20 10:56
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.256
  • 语种:中文;
  • 页:TJJS201810003
  • 页数:14
  • CN:10
  • ISSN:11-1813/V
  • 分类号:23-36
摘要
简要回顾了高超声速推进再生冷却的发展历程,介绍了高超声速推进再生冷却的基本特点。根据高超声速推进本身特点,从不同层面分析了高超声速推进再生冷却所面临的主要矛盾和难点。在此基础上,就高超声速推进再生冷却系统冷源不足、冷源及热载荷分布不均、系统动态特性复杂等问题的研究进展进行了详细的综述,包括热沉提升技术、超临界化学反应流动换热特性、强化换热技术以及再生冷却动态特性等方面的研究进展以及亟待解决的主要科学和技术问题。基于此,对目前高超声速推进再生冷却未来的发展进行了展望,认为高热沉燃料技术以及组合冷却技术等现有冷却技术的深化研究以及与其它领域技术的结合,是今后高超声速推进再生冷却的发展方向。
        The history of regenerative cooling technology used for hypersonic propulsion and its basic characters were briefly introduced. According to the basic characters of hypersonic propulsion,main paradoxes and difficulties in developing the regenerative cooling technology were analyzed from different aspects. And on the basis of the analysis,the detailed review of the studies on solving the problems of the lacking cooling capacity of fuel,non-uniform distribution of heat load and coolant flow,dynamics of the coolant flow in the cooling channel was carried out,including how to improve the cooling capacity,figuring out the mechanism of supercritical cooling flow with cracking reaction,heat transfer enhancement and the dynamic heat transfer mechanism. At the end,the authors gave their opinions on the further development of regenerative cooling technology for hypersonic propulsion,thinking that deeper studies based on the multi-discipline research and current studies such as high heat sink fuel technology,combined cooling technology will be the best way.
引文
[1]占云.高超声速技术(HyTech)计划[J].飞航导弹,2003,(3):44-50.
    [2]肖红雨,高峰,李宁.再生冷却技术在超燃冲压发动机中的应用与发展[J].飞航导弹,2013,(8):78-81.
    [3] Youn B,Mills A F. Cooling Panel Optimization for theActive Cooling System of a Hypersonic Aircraft[J].Journal of Thermophysics and Heat Transfer,1995,9(1):136-143.
    [4] Wieting R A,Gufi R W. Thermal-Structural Design/Analysis of an Airframe-Integrated Hydrogen-Cooled Scramjet[J]. Journal of Aircraft,1976,13(3):192-197.
    [5] Salakhutdinov G M. Development of Methods of Cooling Liquid Propellant Rocket Engines(ZhRDs), 1903-1970[M]. USA:History of Rocketry and Astronautics,1990:115-122.
    [6] Gascoin N,Abraham G,Gillard P. Thermal and Hydraulic Effects of Coke Deposit in Hydrocarbon Pyrolysis Process[J]. Journal of Thermophysics and Heat Transfer,2012,26(1):57-65.
    [7] Jiang Qin,Silong Zhang,Wen Bao,et al. Off-Design Condition Cooling Capacity Analysis of Recooling Cycle for a Scramjet[J]. Journal of Propulsion and Power,2012,28(6):1285-1292.
    [8] Jiang Qin,Silong Zhang,Wen Bao,et al. Effect of Recooling Cycle on Performance of Hydrogen Fueled Scramjet[J]. International Journal of Hydrogen Energy,2012,37(23):18528-18536.
    [9] Jiang Qin,Wen Bao,Silong Zhang,et al. Thermodynamic Analysis for a Chemically Recuperated Scramjet[J]. Science China Technological Sciences,2012,55(11):3204-3212.
    [10] Kazmar R. Airbreathing Hypersonic Propulsion, at Pratt&Whitney-Overview[R]. AIAA 2005-3256.
    [11] Faulkner R. The Evolution of the HySet Hydrocarbon Fueled Scramjet Engine[R]. AIAA 2003-7005.
    [12] Wishart D,Fortin T,Guinan D. Design,Fabrication and Testing of an Actively Cooled Scramjet Propulsion System[R]. AIAA 2003-0015.
    [13] Boudreau A. Hypersonic Air-Breathing Propulsion Efforts in the Air Force Research Laboratory[R]. AIAA2005-3255.
    [14] Moses P L,Rausch V L,Nguyen L T,et al. NASA Hypersonic Flight Demonstrators-Overview, Status, and Future Plans[J]. Acta Astronautica,2004,55(3):619-630.
    [15]牛文,李文杰.美国空军圆满完成X-51A第四次试飞[J].飞航导弹,2013,(5).
    [16] Daniau E,Bouchez M. Numerical Simulations and Experimental Results of Endothermic Fuel Reforming for Scramjet Cooling Application[R]. AIAA 2006-7975.
    [17] Burnes R,Lee M J,McManigal J,et al. Thermal Management in Hypersonic Vehicles:Characterization of Phase Change Materials[R]. AIAA 2001-3974.
    [18] Sobel D R,Spadaccini L J. Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion[J]. Journal of Engineering for Gas Turbines and Power,1997,119:344-351.
    [19] Huang H,Sobel D R,Spadaccini L J. Endothermic Heat-Sink of Jet Fuels for Scramjet Cooling[R]. AIAA2002-3871.
    [20] Alexey V Korabelnikov,Alexander L Kuranov. Thermal Protection Using Endothermic Fuel Conversion[R].AIAA 2005-3368.
    [21]高涵,李祖光,厉刚,等.吸热型碳氢燃料催化脱氢的研究述评[J].推进技术,1998,19(4):101-104.(GAO Han,LI Zu-guang,LI Gang,et al. Review of Dehydrognation Catalysis of Endothermic Hydrocarbon Fuel[J]. Journal of Propulsion Technology,1998,19(4):101-104.)
    [22]符全军,燕珂,杜宗罡,等.吸热型碳氢燃料研究进展[J].火箭推进,2005,31(5):33-36.
    [23] Kuranov A L,Korabelnicov A V,Kuchinskiy V V,et al. Fundamental Techniques of the“AJAX”. Modern State of Research[R]. AIAA 2001-1915.
    [24] Lau K,Scuden L,Petley D,et al. Dual Fuel Vehicle Thermal Management[R]. AIAA 96-4596.
    [25] Fischer A. Design of a Fuel Thermal Management System for Long Range Air Vehicles[R]. AIAA 2005-5647.
    [26] Wen B,Jiang Q,Zhou W,et al. Parametric Performance Analysis of Multiple Re-Cooled Cycle for Hydrogen Fueled Scramjet[J]. International Journal of Hydrogen Energy,2009,34(17):7334-7341.
    [27]秦江.超燃冲压发动机冷却/回热复合循环研究[D].哈尔滨:哈尔滨工业大学,2012.
    [28] Qin J,Zhang S,Bao W,et al. Off-Design Condition Cooling Capacity Analysis of Recooling Cycle for a Scramjet[J]. Journal of Propulsion&Power,2012,28(6):1285-1292.
    [29] Bao W,Duan Y,Zhou W,et al. Hydrogen-Fueled Scramjet Cooling System Investigation Using Combustor and Regenerative Cooling Coupled Model[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering,2013,228(6):820-830.
    [30] Fan X,Yu G,Li J,et al. Combustion and Ignition of Thermally Cracked Kerosene in Supersonic Model Combustors[J]. Journal of Propulsion and Power,2007,23(2):317-324.
    [31] Wang Y Z,Hua Y X,Meng H. Numerical Studies of Supercritical Turbulent Convective Heat Transfer of Cryogenic-Propellant Methane[J]. Journal of Thermophysics and Heat Transfer,2010,24(3):490-500.
    [32] Maurice L Q,Lander H,Edwards T,et al. Advanced Aviation Fuels:a Look Ahead via a Historical Perspective[J]. Fuel,2001,80(5):747-756.
    [33] Meyer M L,Edwards T,Eitman D A. Evaluation of Heat Transfer and Thermal Stability of Supercritical JP-7 Fuel[M]. USA:National Aeronautics and Space Administration,1997.
    [34] Linne D,Meyer M,Braun D,et al. Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures[R]. AIAA2000-3128.
    [35] Stiegemeier B,Meyer M,Taghavi R. A Thermal Stability and Heat Transfer Investigation of Five Hydrocarbon Fuels:JP-7,JP-8,JP-8+100,JP-10,and RP-1[R].AIAA 2002-3873.
    [36] Helfrich T M,Schauer F R,Bradley R P,et al. Evaluation of Catalytic and Thermal Cracking in a JP-8 Fueled Pulsed Detonation Engine[R]. AIAA 2007-235
    [37] Edwards T,DeWitt M J,Shafer L,et al. Fuel Composition Influence on Deposition in Endothermic Fuels[R].AIAA 2006-7973.
    [38] Nagley E,King P,Schauer F,et al. Fuel Composition Analysis of Endothermically Heated JP-8 Fuel for Use in a Pulse Detonation Engine[D]. USA:Defense Technical Information Center,2008.
    [39]李中洲,朱惠人.超临界压力下航空煤油传热特性[J].推进技术,2011,32(2):261-265.(LI Zhongzhou,ZHU Hui-ren. Heat Transfer Characteristics of Kerosene in Micro-Channel under Supercritical Pressure[J]. Journal of Propulsion Technology,2011,32(2):261-265.)
    [40]张斌,张春本,邓宏武,等.超临界压力下碳氢燃料在竖直圆管内换热特性[J].航空动力学报,2012,27(3):595-603.
    [41] Zhong F,Fan X,Yu G,et al. Heat Transfer of Aviation Kerosene at Supercritical Conditions[J]. Journal of Thermophysics and Heat Transfer,2009,23(3):543-550.
    [42] Chen W,Fang X. Modeling of Convective Heat Transfer of RP-3 Aviation Kerosene in Vertical Miniature Tubes under Supercritical Pressure[J]. International Journal of Heat and Mass Transfer,2016,95:272-277.
    [43] Hua Y X,Wang Y Z,Meng H. A Numerical Study of Supercritical Forced Convective Heat Transfer of n-Heptane Inside a Horizontal Miniature Tube[J]. The Journal of Supercritical Fluids,2010,52(1):36-46.
    [44] Li X,Zhong F,Fan X,et al. Study of Turbulent Heat Transfer of Aviation Kerosene Flows in a Curved Pipe at Supercritical Pressure[J]. Applied Thermal Engineering,2010,30(13):1845-1851.
    [45] Li X,Huai X,Cai J,et al. Convective Heat Transfer Characteristics of China RP-3 Aviation Kerosene at Supercritical Pressure[J]. Applied Thermal Engineering,2011,31(14-15):2360-2366.
    [46] Zhang C,Xu G,Sun J,et al. Modified K-ΕModel for RP-3 Kerosene in a Horizontal Circular Tube at Supercritical Pressure[J]. Applied Thermal Engineering,2016,102:1403-1411.
    [47] Liang J,Liu Z,Pan Y. Coupled Heat Transfer of Supercritical n-Decane in a Curved Cooling Channel[J].Journal of Thermophysics and Heat Transfer,2016,30(3):1-7.
    [48] Jianhan Liang,Zhiqi Liu,Yu Pan. Flight Acceleration Effect on Heat Transfer Deterioration of Actively Cooled Scramjet Engines[J]. Journal of Thermophysics and Heat Transfer,2016,30(2):279-287.
    [49] Sunden B A,Wu Z,Huang D. Comparison of Heat Transfer Characteristics of Aviation Kerosene Flowing in Smooth and Enhanced Mini Tubes at Supercritical Pressures[J]. International Journal of Numerical Methods for Heat&Fluid Flow,2016,26(3-4):1289-1308.
    [50]屈云凤.超燃冲压发动机冷却通道内碳氢燃料传热及裂解特性研究[D].哈尔滨:哈尔滨工业大学,2010.
    [51]谢凯利.小尺度矩形通道内碳氢燃料流动及强化换热数值计算及实验研究[D].哈尔滨:哈尔滨工业大学,2015.
    [52] Liu P,Zhou H,Gao X,et al. An Experimental and Numerical Investigation on Thermal Cracking of n-Decane in the Microchannel[J]. Petroleum Science and Technology,2016,34(6):555-561.
    [53] Ward T,Zabarnick S,Ervin J,et al. Simulations of Flowing Mildly-Cracked Normal Alkanes Incorporating Proportional Product Distributions[J]. Journal of Propulsion&Power,2004,20(3):394-402.
    [54] Ward T A,Ervin J S,Zabarnick S,et al. Pressure Effects on Flowing Mildly-Cracked n-Decane[J]. Journal of Propulsion&Power,2005,21(2):344-355.
    [55] Zhu Y,Liu B,Jiang P. Experimental and Numerical Investigations on n-Decane Thermal Cracking at Supercritical Pressures in a Vertical Tube[J]. Energy&Fuels,2013,28(1):2187-2193.
    [56] Bo R,Meng H,Yang V. Simplification of Pyrolytic Reaction Mechanism and Turbulent Heat Transfer of nDecane at Supercritical Pressures[J]. International Journal of Heat&Mass Transfer,2014,69(2):455-463.
    [57] Xu K,Meng H. Modeling and Simulation of Supercriti-cal-Pressure Turbulent Heat Transfer of Aviation Kerosene with Detailed Pyrolytic Chemical Reactions[J].Energy&Fuels,2015,29(7):4137-4149.
    [58]冯宇.超临界碳氢燃料流动裂解耦合特性的数值研究[D].哈尔滨:哈尔滨工业大学,2014.
    [59] Gascoin N,Gillard P,Dufour E,et al. Validation of Transient Cooling Modeling for Hypersonic Application[J]. Journal of Thermophysics&Heat Transfer,2007,21(1):86-94.
    [60] Bao W,Li X,Qin J,et al. Efficient Utilization of Heat Sink of Hydrocarbon Fuel for Regeneratively Cooled Scramjet[J]. Applied Thermal Engineering,2012,33-34(1):208-218.
    [61] Qin J,Zhang S,Bao W,et al. Thermal Management Method of Fuel in Advanced Aeroengines[J]. Energy,2013,49:459-468.
    [62]蒋劲.超燃冲压发动机燃烧室再生冷却研究[D].西安:西北工业大学,2006.
    [63]段艳娟.超燃冲压发动机主动热防护结构及性能优化研究[D].哈尔滨:哈尔滨工业大学,2012.
    [64]蒋劲,张若凌,乐嘉陵.超燃冲压发动机再生冷却热结构设计的计算工具[J].实验流体力学,2006,20(3):1-7.
    [65] Zhang S,Feng Y,Zhang D,et al. Parametric Numerical Analysis of Regenerative Cooling in Hydrogen Fueled Scramjet Engines[J]. International Journal of Hydrogen Energy,2016,41(25):10942-10960.
    [66] Zhang S,Qin J,Xie K,et al. Thermal Behavior Inside Scramjet Cooling Channels at Different Channel Aspect Ratios[J]. Journal of Propulsion&Power,2015,127:1-14.
    [67] Zhang S,Feng Y,Jiang Y,et al. Thermal Behavior in the Cracking Reaction Zone of Scramjet Cooling Channels at Different Channel Aspect Ratios[J]. Acta Astronautica,2016,127:41-56.
    [68]曹杰,谢凯利,秦江,等.矩形通道内球形凹陷排布方式对流动换热影响的数值研究[C].大连:中国工程热物理学会,2015.
    [69] Xu K,Tang L,Meng H. Numerical Study of Supercritical-Pressure Fluid Flows and Heat Transfer of Methane in Ribbed Cooling Tubes[J]. International Journal of Heat&Mass Transfer,2015,84:346-358.
    [70] Feng Y,Huang H,Li T,et al. Flow Field and Heat Transfer Analysis of Local Structure for Regenerative Cooling Panel[J].热科学学报,2012,21(2):172-178.
    [71] Yu F,Jiang Q,Wen B,et al. Numerical Analysis of Convective Heat Transfer Characteristics of Supercritical Hydrocarbon Fuel in Cooling Panel with Local Flow Blockage Structure[J]. Journal of Supercritical Fluids,2014,88(2):8-16.
    [72]王飞.带有化学反应的流体网络计算方法与应用研究[D].哈尔滨:哈尔滨工业大学,2013.
    [73]刘升君,金峰,景小龙,等.冲压发动机燃烧室再生冷却数值模拟研究[J].江苏航空,2010,(S1):24-27.
    [74]姜俞光.考虑化学反应的并联通道高温碳氢燃料流量分配特性研究[D].哈尔滨:哈尔滨工业大学,2014.
    [75]姜俞光,秦江,鲍文.并联通道碳氢燃料流量偏差及抑制方法研究[C].大连:中国工程热物理学会,2015.
    [76] Jiang Y,Zhang S,Feng Y,et al. A Control Method for Flow Rate Distribution of Cracked Hydrocarbon Fuel in Parallel Channels[J]. Applied Thermal Engineering,2016,105:531-536.
    [77] Qin J,Jiang Y,Li X,et al. Flow Rate Distribution of Cracked Hydrocarbon Fuel in Parallel Pipes[J]. Fuel,2015,161:105-112.
    [78] Chen Y,Wang Y,Bao Z,et al. Numerical Investigation of Flow Distribution and Heat Transfer of Hydrocarbon Fuel in Regenerative Cooling Panel[J]. Applied Thermal Engineering,2015,98:628-635.
    [79]鲍文,周伟星,周有新,等.超燃冲压发动机再生冷却结构的强化换热优化研究[J].宇航学报,2008,29(1):252-257.
    [80]夏新林,艾青.一种再生冷却面板的温度控制热设计方法[J].航空动力学报,2010,25(1):1-5.
    [81]鲍文,段艳娟,周伟星.局部高热流壁面自适应热流控制(一)动态传热建模及分析[C].郑州:中国工程热物理学会传热传质学学术会议,2009.
    [82]于彬,周伟星,于文力,等.燃料裂解特性对供油系统稳定性的影响[J].推进技术,2013,34(12):1702-1707.(YU Bin,ZHOU Wei-xing,YU Wen-li,et al. Effects of Fuel Cracking Characteristic on Stability of Fuel Supply System[J]. Journal of Propulsion Technology,2013,34(12):1702-1707.)
    [83] Zhou W,Yu B,Qin J,et al. Mechanism and Influencing Factors Analysis of Flowing Instability of Supercritical Endothermic Hydrocarbon Fuel Within a SmallScale Channel[J]. Applied Thermal Engineering,2014,71(1):34-42.
    [84]严俊杰,祝银海,芦泽龙,等.超临界压力碳氢燃料瞬态加热响应特性[J].化工学报,2015,66(S1):65-70.
    [85] Yan J,Liu Z,Bi Q,et al. Heat Transfer of Hydrocarbon Fuel under Steady States and Pressure-Transient States[J]. Journal of Propulsion and Power,2015,32(1):1-8.
    [86]鲍文,章思龙,秦江.再生冷却超燃冲压发动机回热循环分析[C].无锡:高超声速科技学术会议,2010.
    [87]鲍文,秦江,周伟星,等.一种新型的超燃冲压发动机闭式冷却循环[J].工程热物理学报,2008,29(12):1985-1989.
    [88]秦江,鲍文,周伟星,等.三种燃料超燃冲压发动机冷却循环性能对比研究[C].黄山:高超声速科技学术会议,2009.
    [89] Jiang Q,Wen B,Zhang S L,et al. Thermodynamic Analysis for a Chemically Recuperated Scramjet[J]. Science China Technological Sciences, 2012, 55(11):3204-3212.
    [90] Jiang Q,Si L Z,Wen B,et al. Experimental Study on Chemical Recuperation Process of Endothermic Hydrocarbon Fuel[J]. Fuel,2013,108(11):445-450.
    [91] Qin J,Zhang S,Bao W,et al. Thermal Management Method of Fuel in Advanced Aeroengines[J]. Energy,2013,49(1):459-468.
    [92] Wen B,Zhang S,Jiang Q,et al. Numerical Analysis of Flowing Cracked Hydrocarbon Fuel Inside Cooling Channels in View of Thermal Management[J]. Energy,2014,67(4):149-161.
    [93] Zhang S,Xiong Y,Cui N,et al. Effect of Channel Aspect Ratio on Chemical Recuperation Process in Advanced Aeroengines[J]. Energy,2017,123:9-19.
    [94] Zhang D,Feng Y,Zhang S,et al. Quasi-One-Dimensional Model of Scramjet Combustor Coupled with Regenerative Cooling[J]. Journal of Propulsion&Power,2016,32(3):1-11.
    [95]张铎,鲍文,秦江,等.碳氢燃料超燃冲压发动机油气涡轮做功能力评估[J].推进技术,2013,34(12):1708-1712.(ZHANG Duo,BAO Wen,QIN Jiang,et al. Evaluation of Fuel Vapor Turbine Capacity for Doing Work Onboard for a Hydrocarbon Fueled Scramjet[J]. Journal of Propulsion Technology,2013,34(12):1708-1712.)
    [96] Zhang D,Qin J,Feng Y,et al. Performance Evaluation of Power Generation System with Fuel Vapor Turbine Onboard Hydrocarbon Fueled Scramjets[J]. Energy,2014,77:732-741.
    [97] Kanda T,Masuya G,Ono F,et al. Effect of Film Cooling/Regenerative Cooling on Scramjet Engine Performances[J]. Journal of Propulsion and Power,1994,10(5):618-624.
    [98]章思龙.碳氢燃料超燃冲压发动机再生/膜复合冷却特性研究[D].哈尔滨:哈尔滨工业大学,2016.
    [99]鲍文,张聪,秦江,等.超燃冲压发动机主被动复合热防护系统方案设计思考[J].推进技术,2013, 34(12):1659-1663.(BAO Wen, ZHANG Cong,QIN Jiang,et al. Design and Consideration of Active and Passive Combined Thermal Protection System of Scramjet[J]. Journal of Propulsion Technology,2013,34(12):1659-1663.)
    [100] Gascoin N,Romagnosi L,Fedioun I,et al. Pyrolysis in Porous Media:Part 2. Numerical Analysis and Comparison to Experiments[J]. Journal of Porous Media,2013,16(9):857-873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700