基于SPI的河南省冬小麦生育期干旱时空变化特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysing Spatiotemporal Variation of the Occurrence of Drought within the Growth Season of Winter Wheat in Henan Province Based on the Standardized Precipitation Index
  • 作者:朱玲玲 ; 张竟竟 ; 李治国 ; 张延伟 ; 梁春玲
  • 英文作者:ZHU Lingling;ZHANG Jingjing;LI Zhiguo;ZHANG Yanwei;LIANG Chunling;Department of Surveying and Planning, Shangqiu Normal University;Economic and Management School, Zhongyuan University of Technology;Institute of Tibetan Plateau Research, Chinese Academy of Sciences;
  • 关键词:干旱 ; 标准化降水指数(SPI) ; 冬小麦
  • 英文关键词:drought;;standard precipitation index(SPI);;winter wheat
  • 中文刊名:GGPS
  • 英文刊名:Journal of Irrigation and Drainage
  • 机构:商丘师范学院测绘与规划学院;中原工学院经济管理学院;中国科学院青藏高原研究所;
  • 出版日期:2018-01-09 10:38
  • 出版单位:灌溉排水学报
  • 年:2018
  • 期:v.37
  • 基金:国家自然科学基金项目(41671072);; 国家社科青年基金项目(14CYJ077);; 河南省科技攻关项目(142102310299,152102310354,142300410305,182102310748);; 河南省哲学社会科学规划项目(2016CJJ082);; 河南省高等学校青年骨干教师培养计划项目(2016GGJS-130);; 商丘师范学院青年骨干教师资助项目(2016GGJS13);商丘师范学院青年科研基金项目(2011QN20);; 河南省高校重点科研项目(15A170011,15A180054)
  • 语种:中文;
  • 页:GGPS201805008
  • 页数:8
  • CN:05
  • ISSN:41-1337/S
  • 分类号:54-61
摘要
【目的】探索以SPI监测冬小麦生育期内干旱时空变化、发展趋势和对粮食产量的影响。【方法】基于1961-2015年河南省17个站点的逐月气象资料,利用标准化降水指数(SPI)定量分析了河南省冬小麦生育期干旱时空演变特征及干旱对冬小麦产量的影响。【结果】生育前期干旱发生频率在24.1%~37.0%之间变化,固始和驻马店最低,三门峡和新乡最高;分蘖期干旱发生频率在18.5%~31.5%之间,开封最低而卢氏最高;返青—抽穗—成熟期干旱发生频率在27.8%~38.9%之间,商丘、西华和信阳最低而宝丰最高;全育期干旱发生频率在24.1%~38.9%之间,固始最低、孟津最高。未来河南省冬小麦生育前期、返青—抽穗—成熟期以干旱为主;分蘖期、全育期以湿润化为主。河南省返青—抽穗—成熟期和全育期干旱对冬小麦气候产量的影响较大。【结论】生育前期和返青—抽穗—成熟期未来呈干旱化趋势,应采用针对性措施及时灌溉,有效应对干旱和保障小麦生产。
        【Objective】This paper is aimed to analyse the spatiotemporal variation of the occurrence of drought as well as its pattern and impact on yield of winter wheat in Henan Province.【Method】We first calculated the standardized precipitation index(SPI) using monthly meteorological data measured at 17 weather stations from1961 to 2015; we then used it to analyse the spatiotemporal variation of the droughts occurring within the growth season of the wheat and their consequent effects upon grain yield across the province.【Result】The frequency of the drought occurrence in early growth stage of the wheat varied between 24.1%~37.0% across the province, with the minimum occurring in Gushi and Zhumadian and the maximum seen in Sanmenxia and Xinxiang. The frequency of the drought occurring at tillering stage varied between 18.5%~31.5%, with the minimum seen in Kaifeng and the maximum in Lushi. The frequency of the drought occurring at greening-earing-maturity stage varied between 27.8%~38.9%, with the minimum occurring in Shangqiu, Xihua and Xinyang, and the maximum in Baofeng. The frequency of the drought during the whole growth season varied between 24.1%~38.9%, with the minimum being in Gushi and the maximum in Mengjin. The analysis revealed that the early stage and the greenheading-maturity stage of the wheat will be drought dominant, while the tillering stage will be relatively wet;droughts occurring at greening-earing-maturity stage had a significant impact on the yield.【Conclusion】The early growth stage and greening-earing-maturity stage are predicted to be more water-stress for wheat growth, and appropriate actions should be taken to tackle the drought to safeguard wheat production.
引文
[1]LOBELL D B,ROVERTS M J,SCHLENKER W S,et al.Greater sensitivity to drought accompanies Maize yield increase in the U.S.Midwest[J].Science,2014,44(6183):516-519.
    [2]OVERPECK J T.Climate science:The challenge of hot drought[J].Nature,2013,503(7476):350-351.
    [3]DAI A G.Increasing drought under global warming in observations and models[J].Nature Climate Change,2013,3(2):52-58.
    [4]赵映慧,郭晶鹏,毛克彪,等.1949—2015年中国典型自然灾害及粮食灾损特征[J].地理学报,2017,72(7):1 261-1 276.
    [5]刘宪锋,朱秀芳,潘耀忠,等.农业干旱监测研究进展与展望[J].地理学报,2015,70(11):1 835-1 848.
    [6]PALMER W C.Meteorological drought[R]//Washington,DC,USA:US Department of Commerce,Weather Bureau,1965.
    [7]MCKEE T B,DOESKIN N J,KLEIST J.Drought monitoring with multiple time scales[R].California:Ninth Conference of Applied Climatology,American Meteorological Society,1995:233-236.
    [8]BUTTAFUOCO G,CALOIERO T,COSCARELLI R.Analyses of Drought Events in Calabria(Southern Italy)Using Standardized Precipitation Index[J].Water Resources Management,2015,29(2):557-573.
    [9]MANATSA D,MUKWADA G,SIZIBA,et al.Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the Standardized Precipitation Index(SPI)[J].Theoretical and Applied Climatology,2010,102(3):287-305.
    [10]张巧凤,刘桂香,于红博,等.基于标准化降水指数的锡林郭勒盟干旱特征分析[J].自然灾害学报,2015,24(5):119-128.
    [11]VICENTE-SERRANO S M,BEGUERIA S,LOPEZ-MORENO J I.A multi-scalar drought index sensitive to global warming:The standardized precipitation evapotranspiration index[J].Journal of Climate,2010,23:1 696-1 718.
    [12]段莹,王文,蔡晓军.PDSI、SPEI及CI指数在2010/2011年冬、春季江淮流域干旱过程的应用分析[J].高原气象,2013,32(4):1 126-1 139.
    [13]明博,陶洪斌,王璞.基于标准化降水蒸散指数研究干旱对北京地区作物产量的影响[J].中国农业大学学报,2013,18(5):28-36.
    [14]刘彦平,蔡焕杰.基于标准化降水指数SPI的泾惠渠灌区干旱演变对冬小麦气候产量的影响[J].干旱地区农业研究,2015,33(3):267-272.
    [15]尹周祥,高超,李学文,等.淮河上游冬小麦生长关键期旱涝灾害阈值研究[J].灌溉排水学报,2017,36(7):100-107.
    [16]张朝,王品,陈一,等.1990年以来中国小麦农业气象灾害时空变化特征[J].地理学报,2013,68(11):1 453-1 460.
    [17]史本林,朱新玉,胡云川,等.基于SPEI指数的近53年河南省干旱时空变化特征[J].地理研究,2015,34(8):1 547-1 558.
    [18]唐侥,孙睿.基于气象和遥感数据的河南省干旱特征分析[J].自然资源学报,2013,28(4):646-655.
    [19]闫研,李忠贤.基于SPEI的河南省冬小麦生育期干旱时空特征分析[J].南京信息工程大学学报(自然科学版),2015,7(2):159-167.
    [20]《中国气象灾害大典》编委会.中国气象灾害大典·河南卷[M].北京:气象出版社.2005.
    [21]李芬,张建新,郝智文,等.山西降水与ENSO的相关性研究[J].地理学报,2015,70(3):420-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700