波浪能发电平台系泊系统耦合动力响应及水动力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coupled Dynamic Response and Hydrodynamic Analysis of Mooring System of Wave Power Generation Platform
  • 作者:冯亮 ; 李昕 ; 史宏达 ; 韩治 ; 董晓晨 ; 何京可
  • 英文作者:FENG Liang;LI Xin;SHI Hong-Da;HAN Zhi;DONG Xiao-Chen;HE Jing-Ke;College of Engineering,Ocean University of China;
  • 关键词:波浪能发电平台 ; 系泊系统 ; SESAM ; 水动力分析 ; 耦合动力响应
  • 英文关键词:wave energy generation platform;;mooring system;;SESAM;;hydrodynamic analysis;;coupled dynamic responses
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学工程学院;
  • 出版日期:2019-02-22
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:v.49;No.292
  • 基金:国家海洋局海洋可再生能源资金项目(GHME2016YY02);; 山东省自然科学基金项目(ZR2017BEE024);山东省自然科学基金重大基础研究项目(ZR2017ZA0202)资助;; 国家自然科学联合基金重点项目(U1706223);; 山东省重大科技专项资助项目(2017CXGC0106)~~
  • 语种:中文;
  • 页:QDHY201903020
  • 页数:8
  • CN:03
  • ISSN:37-1414/P
  • 分类号:174-181
摘要
本文以一种新型波浪能发电平台为研究对象,分别采用基于三维势流理论的软件Sesam和基于有限体积法的Flow3D软件,对平台和发电浮子进行水动力分析。应用Sesam-HydroD模块计算了平台和发电浮子在频域内的运动响应,将平台和发电浮子的垂荡运动响应进行对比分析,结果表明,在正常海况下,平台与发电浮子垂荡运动相对幅值满足捕能系统的发电需求。应用Flow3D软件对平台整体进行水动力分析,结果表明,平台与发电浮子相对运动振幅在0.3~0.4m间,可满足发电需求。在此基础之上,应用Orcaflex软件,通过时域耦合动力分析的方法,计算了平台在自存工况和作业工况下的运动响应和系泊缆动张力响应,结果表明:在自存工况下,平台锚泊线的安全系数符合规范要求,平台具有良好的安全性能,能够适应恶劣的海洋环境;在作业工况下,平台的垂荡运动响应对波浪方向变化并不敏感,捕能系统不受波浪方向变化的影响,满足发电需求。另外,本文的研究结果能为类似的海洋平台的研究提供建议和参考。
        In this paper,a new type of wave energy generation platform is taken as the research object.The software Sesam based on three-dimensional potential theory and software Flow3 Dbased on finite volume method are used for hydrodynamic analysis of platform and power generation float.The motion response of the platform and the generator float in the frequency domain is calculated using the SesamHydroD module.Comparing the heave motion response of the platform and the power generating float,the results show that under normal sea conditions,the relative amplitude of the platform and the generating float heave motion meets the power generation demand of the energy capturing system.The software Flow3 Dwas used to analyze the hydrodynamics of the platform as a whole.The results show that the relative motion amplitude of the platform and the power generating float is between 0.3~0.4 m,which can meet the power generation demand.On this basis,software Orcaflex is used to calculate the motion response and mooring line dynamic tension response of the platform under survival conditions and working conditions by means of time domain coupled dynamic analysis.On this basis,software Orcaflex is used to calculate the motion response and mooring line dynamic tension response of the platform under survival conditions and working conditions by means of time-domain coupling dynamic analysis.The results show that under the self-storage condition,the safety factor of the platform mooring line meets the requirements of the specification,and the platform has good safety performance and can adapt to the harsh marine environment.Under the working conditions,the heave motion response of the platform is not sensitive to the change of the wave direction,and the energy capture system is not affected by the change of the wave direction to meet the power generation demand.In addition,the results of this paper can provide suggestions and reference for similar offshore platform research.
引文
[1]崔琳,张原飞,李卓涵,等.液压浮子式波浪能发电平台的SCADA系统设计研究[J].海洋技术学报,2014,33(4):57-61.Cui Lin,Zhang Yuanfei,Li Zhuohan,et al.Study on SCADA system design of hydraulic float wave energy generation platform[J].Journal of Marine Technology,2014,33(4):57-61.
    [2]刘延俊,贾瑞,张健.波浪能发电技术的研究现状与发展前景[J].海洋技术学报,2016,35(5):100-104.Liu Yanjun,Jia Rui,Zhang Jian.Research status and development prospect of wave energy power generation technology[J].Journal of Marine Technology,2016,35(5):100-104.
    [3] FENG Heng,SUN Chun-mie,CHEN Zheng-wei,et al.The motion performance and moring system of deepwater semi-submersible drilling unit[J].Journal of Marine Science and Application,2009,8(3):233-236.
    [4] Shan Ma,Wenyang Duan.Dynamic coupled analysis of the floating platform using the asynchronous coupling algorithm[J].Journal of Marine Science and Application,2014,13(1):85-91.
    [5] You-gang Tang,Su-xia Zhang,Ruo-yu Zhang,et al.Development of study on the dynamic characteristics of deep water mooring system[J].Journal of Marine Science and Application,2007,6(3):17-23.
    [6] Zhao-chen Sun,Xing-gang Wang,Shu-xiu Liang,et al.Dynamic response analysis of DDMS platform subjected to actions of wave groups and current fources[J].Journal of Hydrodynamics,2011,23(6):697-708.
    [7] Jia-yang Gu,Jian-min Yang,Hai-ning Lv.Studies of TLP dynamic response under wind,waves and current[J].China Ocean Engineering,2012,26(3):363-378.
    [8]徐刚,段文洋.规则波中半潜式平台水动力的时域数值模拟[J].江苏科技大学学报(自然科学版),2012,26(1):1-7.Xu Gang,Duan Wenyang.Time-domain numerical simulation of hydrodynamics of semi-submersible platforms in regular waves[J].Journal of Jiangsu University of Science and Technology(Natural Science Edition),2012,26(1):1-7.
    [9]刘灶,陈超核.风浪流作用下半潜平台水动力及其锚泊系统响应分析[J].船海工程,2018,47(1):75-79.Liu Zao,Chen Chaohe.Analysis of hydrodynamics and mooring system response of semi-submersible platforms under wind and wave currents[J].Ship and Sea Engineering,2018,47(1):75-79.
    [10]赵晶瑞,范模,段梦兰.深水系泊缆绳动力响应研究[J].船舶工程,2013,35(4):103-107.ZHAO Jing-rui,FAN Mo,DUAN Meng-lan.Study on dynamic response of deep water mooring cables[J].Ship Engineering,2013,35(4):103-107.
    [11] O M Faltinsen.Sea Loads on Ships and Offshore Structures[M].New York:Cambridge University Press,1990.
    [12] American Petroleum Institute.Design and Analysis of StationKeeping Systems for Floating Structures[S].Washington:API Publishing Services,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700