林木基因型与环境互作的研究方法及其应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Methodologies for Genotype by Environment Interactions in Forest Trees and Their Applications
  • 作者:林元震
  • 英文作者:Lin Yuanzhen;Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architecture, South China Agricultural University;
  • 关键词:基因型与环境互作 ; G×E驱动因素 ; 遗传相关 ; 遗传力 ; 遗传增益
  • 英文关键词:genotype by environment interaction;;G×E drivers;;genetic correlation;;heritability;;genetic gain
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:华南农业大学林学与风景园林学院广东省森林植物种质创新与利用重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:林业科学
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金项目(31470673)
  • 语种:中文;
  • 页:LYKE201905013
  • 页数:10
  • CN:05
  • ISSN:11-1908/S
  • 分类号:145-154
摘要
我国是全球第一大木材进口国和第二大木材消费国,木材对外依存度已连续多年超过50%。然而,我国每公顷森林年均生长量约为林业发达国家水平的一半,这说明我国林木育种水平与林业发达国家相比仍有较大差距。因此,加强林木的规模化试验与精准遗传评估,通过林木良种的精确选育与推广对提高我国人工林的生产力水平具有重要意义。基因型与环境互作是林木规模化试验与精准遗传评估的重要环节之一。基因型与环境互作(G×E)是指基因型的相对表现在不同环境下缺乏稳定性,表现为不同环境下基因型排序变化或基因型间差别不恒定。现有研究证实,林木G×E很普遍且通常很大,要找到具有广泛适应性的优良基因型往往较困难。由于G×E会减小遗传力和遗传增益,因此了解G×E效应及其驱动环境因子,对育种设计、良种选育和种苗配置至关重要。本文归纳了目前研究G×E的主流分析方法(包括因子分析法、BLUP-GGE联合分析法)和遗传力的估算方法,也比较了这些G×E分析方法(包括稳定性分析、B型遗传相关、AMMI分析、GGE双标法、因子分析法和BLUP-GGE联合分析法)的优缺点,其次综述了全球重要经济树种(湿地松、火炬松、欧洲云杉、巨桉、辐射松、花旗松,等)近年来在生长性状(胸径、树高、材积,等)、形质性状(通直度、分枝角度、分枝大小,等)和材性性状(木材密度、弹性模量,等)的G×E研究进展,进而讨论了林木G×E的环境驱动因子及其应对策略,最后针对林木G×E研究新方法开发、加强多性状的G×E分析以及将基因组选择融入G×E分析方面对未来研究方向提出建议:1)新的林木遗传分析模型与G×E分析的联合应用; 2)林木多环境、多性状的G×E的模式和幅度; 3)特定环境的林木基因组育种值的精准估计。
        China is the largest wood importer and the second largest wood consumer in the world, and its dependence on external supply has exceeded 50% for several years. However, the average annual growth of forest per hectare in China is about half of that in the developed countries in forestry, which indicates that there is still larger gap in tree breeding in China, compared with the developed countries in forestry. Therefore, strengthening the large-scale experiments and accurate genetic evaluation of forest trees has great significance in improving the productivity of China's plantation forests through the precise selection and breeding of tree varieties. Genotype by environment interaction is one of the important contents of large-scale experiments and accurate genetic evaluation of forest trees. Genotype by environment interaction(G×E) refers to a lack of consistency in the relative performance of genotypes among different environments, and represents differences in genotype rankings or differences in performance inconstant among environments. Existing studies have confirmed that G×E is very common and often large in forest trees, and it is usually difficult to find consistently superior genotypes with broad adaptation. Since G×E can reduce heritability and genetic gain, understanding the G×E effects and their environmental drivers is vital to mating design, species/variety selection and genotype deployment. The paper reviews the current main analytical method for identifying G×E(including factor analytic method and BLUP-GGE joint analysis) and estimating heritability, and compares the strength and weakness of these analytical method(including stability analysis, type-B genetic correlation, AMMI, GGE biplot, factor analytic method and BLUP-GGE joint analysis), and also reviews the progress of G×E studies on growth traits(such as diameter at breast height, height and volume), form traits(such as stem straightness, branch angle and branch size) and wood properties(such as wood density and modulus of elasticity) in forest species(such as Pinus elliottii, Pinus taeda, Picea abies, Eucalyptus grandis, Pinus radiata and Pseudotsuga menziesii) of global economic importance. Moreover, the paper discusses the environmental drivers that cause G×E and strategies for dealing with G×E in tree breeding. Finally, the future research of G×E is proposed, alongside development of new analytical method, focusing on multi-variate model of G×E and integration of genomic selection with G×E. New genetic analysis model for forest trees should be adopted into G×E studies. The patterns and magnitude of G×E should be focused on multi-variate model for multi-environment trials. Accurate estimation of environment-specific genomic breeding values of forest trees should be performed.
引文
程玲,张心菲,张鑫鑫,等.2018.基于BLUP和GGE双标图的林木多地点试验分析.西北农林科技大学学报:自然科学版,46(3):87-93.(Cheng L,Zhang X F,Zhang X X,et al.2018.Forestry multi-environment trial analysis based on BLUP and GGE biplot.Journal of Northwest A&F University:Natural Science Edition,46(3):87-93.[in Chinese])
    顾万春.1991.刺槐无性系G×E互作的研究—遗传稳定性和生长适应性的评价.林业科学研究,4(6):623-628.(Gu W C.1991.Study on G×E interaction of Robinia pseudoacacia clones-evaluation of genetic stability and growth adaptation.Forest Research,4(6):623-628.[in Chinese])
    李志新,赵曦阳,杨成君,等.2013.转TaLEA基因小黑杨株系变异及生长稳定性分析.北京林业大学学报,35(2):57-62.(Li Z X,Zhao X Y,Yang C J,et al.2013.Variation and growth adaptability analysis of transgenic Populus simonii × P.nigra lines carrying TaLEA gene.Journal of Beijing Forestry University,35(2):57-62.[in Chinese])
    林元震,张卫华,程玲,等.2017.基于空间效应与竞争效应的林木遗传分析模型.华南农业大学学报,38(5):74-80.(Lin Y Z,Zhang W H,Cheng L,et al.2017.Genetic analysis model of forest based on space and competition effects.Journal of South China Agricultural University,38(5):74-80.[in Chinese])
    刘宇,徐焕文,李志新,等.2015.白桦杂交子代家系生长变异及稳定性分析.植物研究,35(6):937-944.(Liu Y,Xu H W,Li Z X,et al.2015.Growth variation and stability analysis of birch crossbreed families.Bulletin of Botanical Research,35(6):937-944.[in Chinese])
    王军辉,顾万春,李斌,等.2000.桤木优良种源/家系的选择研究—生长的适应性和遗传稳定性分析.林业科学,36(3):59-66.(Wang J H,Gu W C,Li B,et al.2000.Study on selection of Alnus cremastogyne provenance/family—analysis of growth adaptation and genetic stability.Scientia Silvae Sinicae,36(3):59-66.[in Chinese])
    Baltunis B S,Brawner J T.2010.Clonal stability in Pinus radiata across New Zealand and Australia 1:Growth and form traits.New Forests,40(3):305-322.
    Baltunis B S,Huber D A,White T L,et al.2007.Genetic analysis of early field growth of loblolly pine clones and seedlings from the same full-sib families.Canadian Journal of Forest Research,37(1):195-205.
    Bian L M,Shi J S,Zheng R H,et al.2014.Genetic parameters and genotype-environment interactions of Chinese fir.Canadian Journal of Forest Research,44(6):582-592.
    Burdon R D.1977.Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding.Silvae Genetica,26(5/6):168-175.
    Cappa E P,Muňoz F,Sanchez L,et al.2015.A novel individual-tree mixed model to account for competition and environmental heterogeneity:a Bayesian approach.Tree Genetics & Genomes,11(6):120-134.
    Carson S D.1991.Genotype × environment interaction and optimal number of progeny test sites for improving Pinus radiata in New Zealand.New Zealand Journal of Forest Science,21(1):32-49.
    Chen Z Q,Karlsson B,Wu H X.2017.Patterns of additive genotype-by-environment interaction in tree height of Norway spruce in southern and central Sweden.Tree Genetics & Genomes,13(1):25-38.
    Costa S J,Borralho N M,Wellendorf H.2000.Genetic parameter estimates for diameter growth,pilodyn penetration and spiral grain in Picea abies (L.) Karst.Silvae Genetica,49(1):29-36.
    Costa S J,Potts B,Dutkowski G.2006.Genotype by environment interaction for growth of Eucalyptus globulus in Australia.Tree Genetics & Genomes,2(2):61-75.
    Cullis B R,Jefferson P,Thompson R,et al.2014.Factor analytic and reduced animal models for the investigation of additive genotype-by-environment interaction in outcrossing plant species with application to a Pinus radiata breeding programme.Theoretical and Applied Genetics,217(10):2193-2210.
    Cullis B R,Smith A B,Coombes N E.2006.On the design of early generation variety trials with correlated data.Journal of Agricultural,Biological,and Environmental Statistics,11(4):381-393.
    Diao S,Hou Y M,Xie Y H,et al.2016.Age trends of genetic parameters,early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families.BMC Genetics,17(1):104-115.
    Dieters M J,White T L,Hodge G R.1995.Genetic parameter estimates for volume from full-sib tests of slash pine (Pinus elliottii).Canadian Journal of Forest Research,25(8):1397-1408.
    Ding M,Tier B,Yan W,et al.2008.Application of GGE biplot analysis to evaluate genotype (G),environment (E) and G×E interaction on Pinus radiata:a case study.New Zealand Journal of Forest Science,38(1):132-142.
    Dungey H S,Low C B,Lee J,et al.2012.Developing breeding and deployment options for Douglas-fir in New Zealand:breeding for future forest conditions.Silvae Genetica,61(3):104-115.
    Dutkowski G.2005.Improved models for the prediction of breeding values in trees.Tasmania:PhD thesis of University of Tasmania.
    El-Dien O G,Ratcliffe B,Kláp?tě J,et al.2015.Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing.BMC Genomics,16(1):1-16.
    Falconer D S,Mackay T F.1996.Introduction to quantitative genetics.England:Longmans Group Limited.
    Finlay W K,Wilkinson G N.1963.The analysis of adaptation in a plant breeding program.Australian Journal of Agricultural Research,14(6):742-754.
    Gapare W J,Ivkovi M,Baltunis B S,et al.2010.Genetic stability of wood density and diameter in Pinus radiata D.Don.plantation estate across Australia.Tree Genetics & Genomes,6(1):113-125.
    Gapare W J,Ivkovi M,Dutkowski G W,et al.2012a.Genetic parameters and provenance variation of Pinus radiata D.Don.‘Eldridge collection’ in Australia 1:growth and form traits.Tree Genetics & Genomes,8(2):391-407.
    Gapare W J,Ivkovi M,Dillon S K,et al.2012b.Genetic parameters and provenance variation of Pinus radiata D.Don.‘Eldridge collection’ in Australia 2:wood properties.Tree Genetics & Genomes,8(4):895-910.
    Gapare W J,Ivkovi M,Liepe K,et al.2015.Drivers of genotype by environment interaction in radiata pine as indicated by multivariate regression trees.Forest Ecology and Management,353:21-29.
    Gauch H G.1992.Statistical analysis of regional yield trials:AMMI analysis of factorial designs.Amsterdam:Elsevier.
    Grattapaglia D,Resende M D.2011.Genomic selection in forest tree breeding.Tree Genetics & Genomes,7(2):241-255.
    Gwaze D P,Wolliams J A,Kanowski P J,et al.2001.Interactions of genotype with site for height and stem straightness in Pinus taeda in Zimbabwe.Silvae Genetica,50(3):135-140.
    Hannrup B,Jansson G,Danell ?.2008.Genotype by environment interaction in Pinus sylvestris L.in southern Sweden.Silvae Genetica,57(6):306-311.
    Hodge G R,White T L.1992.Genetic parameters for growth traits at different ages in slash pine and some implications for breeding.Silvae Genetica,41(4/5):252-262.
    Holland J B,Nyquist W E,Cervantes-Martinez C T.2003.Estimating and interpreting heritability for plant breeding:An update.Plant Breeding Reviews,22:9-111.
    Isik F,Bartholomé J,Farjat A,et al.2016.Genomic selection in maritime pine.Plant Science,242:108-119.
    Isik F,Holland J,Maltecca C.2017.Genetic data analysis for plant and animal breeding.Switzerland:Springer International Publishing.
    Isik F.2014.Genomic selection in forest tree breeding:the concept and an outlook to the future.New Forests,45(3):379-401.
    Ivkovi M,Gapare W J,Yang H X,et al.2015.Pattern of genotype by environment interaction for radiata pine in southern Australia.Annals of Forest Science,72(3):391-401.
    Ivkovi M,Wu H X,McRae T A,et al.2006.Developing breeding objectives for radiata pine structural wood production 1:Bioeconomic model and economic weights.Canadian Journal of Forest Research,36(11):2920-2931.
    Jett J B,McKeand S E,Weir R J.1991.Stability of juvenile wood specific gravity of loblolly pine in diverse geographic areas.Canadian Journal of Forest Research,21(7):1080-1085.
    Johnson G R,Burdon R D.1990.Family-site interaction in Pinus radiata:implications for progeny testing strategy and regionalised breeding in New Zealand.Silvae Genetica,39(2):55-62.
    Johnson G R,Gartner B L.2006.Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir.Tree Genetics & Genomes,3(1):25-33.
    Kang M S.2002.Quantitative genetics,genomics and plant breeding.Cambridge:CAB International.
    Li B,Wu R.1997.Heterosis and genotype × environment interactions of juvenile aspens in two contrasting sites.Canadian Journal of Forest Research,27(10):1525-1537.
    Li Y,Suontama M,Burdon R D,et al.2017.Genotype by environment interactions in forest tree breeding:review of methodology and perspectives on research and application.Tree Genetics & Genomes,13(3):60-77.
    Li Y,Xue J,Clinton P W,et al.2015.Genetic parameters and clone by environment interactions for growth and foliar nutrient concentrations in radiata pine on 14 widely diverse New Zealand sites.Tree Genetics & Genomes,11(1):1-16.
    Li Y,Wilcox P,Telfer E,et al.2016.Association of single nucleotide polymorphisms with form traits in radiata pine in the presence of genotype by environment interactions.Tree Genetics & Genomes,12(4):63-74.
    Lima J T,Breese M C,Cahalan C M.2000.Genotype-environment interaction in wood basic density of Eucalyptus clones.Wood Science and Technology,34(3):197-206.
    Lin Y Z,Yang H X,Ivkovic M,et al.2013.Effect of genotype by spacing interaction on radiata pine genetic parameters for height and diameter growth.Forest Ecology and Management,304(4):204-211.
    Lin Y Z,Yang H X,Ivkovic M,et al.2014.Effect of genotype by spacing interaction on radiata pine wood density.Australian Forestry,77(3/4):203-211.
    McKeand S E,Eriksson G,Roberds J H.1997.Genotype by environment interaction for index traits that combine growth and wood density in loblolly pine.Theoretical and Applied Genetics,94(8):1015-1022.
    Muir W,Nyquist W E,Xu S.1992.Alternative partitioning of the genotype-by-environment interaction.Theoretical and Applied Genetics,84(1/2):193-200.
    Muneri A,Raymond C A.2000.Genetic parameters and genotype-by-environment interactions for basic density,pilodyn penetration and stem diameter in Eucalyptus globulus.Forest Genetics,7(4):317-328.
    Osorio L F,White T L,Huber D A.2001.Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden.Silvae Genetica,50(1):30-37.
    Paul A D,Foster G S,Caldwell T,et al.1997.Trends in genetic and environmental parameters for height,diameter,and volume in a multilocation clonal study with loblolly pine.Forest Science,43(1):87-98.
    Pederick L A.1990.Family × site interaction in Pinus radiata in Victoria,Australia,and implications for breeding strategy.Silvae Genetica,39(3/4):134-140.
    Piepho H P.1995.Robustness of statistical tests for multiplicative terms in the additive main effects and multiplicative interaction model for cultivar trials.Theoretical and Applied Genetics,90(3/4):438-443.
    Rae A M,Pinel M P,Bastien C,et al.2008.QTL for yield in bioenergy Populus:identifying G × E interactions from growth at three contrasting sites.Tree Genetics & Genomes,4(1):97-112.
    Raymond C A.2011.Genotype by environment interactions for Pinus radiata in New South Wales,Australia.Tree Genetics & Genomes,7(4):819-833.
    Resende M F,Muňoz P,Acosta J J,et al.2012.Accelerating the domestication of trees using genomic selection:accuracy of prediction models across ages and environments.New Phytologist,193(3):617-624.
    Robertson A.1959.The sampling variance of the genetic correlation coefficient.Biometrics,15(3):469-485.
    Roth B E,Jokela E J,Martin T A,et al.2007.Genotype ×environment interactions in selected loblolly and slash pine plantations in the southeastern United States.Forest Ecology and Management,238(1-3):175-188.
    Rweyongeza D M.2011.Pattern of genotype-environment interaction in Picea glauca(Moench) Voss in Alberta,Canada.Annals of Forest Science,68(2):245-253.
    Shelbourne C J.1972.Genotype-environment interaction:its study and its implications in forest tree improvement//The IUFRO Genetics and SABRAO Joint Symposium,Tokyo,Japan,1-28.
    Sierra-Lucero V,Huber D A,McKeand S E,et al.2003.Genotype-by-environment interaction and deployment considerations for families from Florida provenances of loblolly pine.Forest Genetics,10(2):85-92.
    Smith A B,Ganesalingam A,Kuchel H,et al.2015.Factor analytic mixed models for the provision of grower information from national crop variety testing programs.Theoretical and Applied Genetics,128(1):55-72.
    Smith A,Cullis B,Thompson R.2001.Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend.Biometrics,57(4):1138-1147.
    Suontama M,Low C B,Stovold G T,et al.2015.Genetic parameters and genetic gains across three breeding cycles for growth and form traits of Eucalyptus regnans in New Zealand.Tree Genetics & Genomes,11(6):1-14.
    Westbrook J W,Walker A R,Neves L G,et al.2014.Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments,ages,and populations.New Phytologist,205(2):627-641.
    White T L,Adams W T,Neale D B.2007.Forest Genetics.Cambridge:CAB International.
    Wu H X,Matheson A C.2005.Genotype by environment interactions in an Australia-wide radiata pine diallel mating experiment:implications for regionalized breeding.Forest Science,51(1):29-40.
    Yan W,Hunt L A,Sheng Q,et al.2000.Cultivar evaluation and mega-environment investigation based on the GGE biplot.Crop Science,40(3):597-605.
    Zapata-Valenzuela J.2012.Use of analytical factor structure to increase heritability of clonal progeny tests of Pinus taeda L.Chilean Journal of Agricultural Research,72(3):309-315.
    Zas R,Merlo E,Diaz R,et al.2003.Stability across sites of Douglas-fir provenances in northern Spain.Forest Genetics,10(1):71-82
    Zheng R H,Hong Z,Su S D,et al.2016.Inheritance of growth and survival in two 9-year-old,open-pollinated progenies of an advanced breeding population of Chinese firs in southeastern China.Journal of Forestry Research,27(5):1067-1075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700