苦荞茶对水溶液中铅、铜、镉、锌、铬离子吸附作用的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biosorption of Lead,Copper,Cadmium,Zinc and Chromium Ions from Aqueous Solutions by Tartary Buckwheat Tea Particles
  • 作者:杨立志 ; 贺丽 ; 何旭 ; 彭胜寒 ; 王荣 ; 陈朝琼 ; 杨晓虹 ; 刘新
  • 英文作者:YANG Li-zhi;HE Li;HE Xu;PENG Sheng-han;WANG Rong;CHEN Zhao-qiong;YANG Xiao-hong;LIU Xin;Department of Public Health,Chengdu Medical College;
  • 关键词:生物吸附 ; 苦荞茶 ; 响应面法 ; 重金属离子
  • 英文关键词:Biosorption;;Tartary buckwheat tea;;Response surface methodology;;Heavy metal ions
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:成都医学院公共卫生学院;
  • 出版日期:2019-01-15
  • 出版单位:光谱学与光谱分析
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(41501112);; 四川省教育厅项目(17ZA0116);; 国家大学生创新训练项目(201513705004)资助
  • 语种:中文;
  • 页:GUAN201901047
  • 页数:9
  • CN:01
  • ISSN:11-2200/O4
  • 分类号:275-283
摘要
生物吸附法以其材料易得、吸附效果好、易解析、环境友好等优点而被广泛的应用于水溶液中低浓度重金属离子的吸附去除。光谱学显示苦荞茶含有多种基团且表面结构疏松,对水溶液中金属离子具有一定吸附潜力。探讨苦荞茶对水溶液中铅、铜、镉、锌、铬离子吸附作用光谱分析。采用扫描电镜(SEM)、能谱分析(EDS)、傅里叶红外光谱(FTIR)对苦荞茶吸附铅、铜、镉、锌、铬前后进行表征,初步解析苦荞茶对水溶液中铅、铜、镉、锌、铬离子吸附作用。使用等温吸附方程(Langmuir,Freundlich,Temkin和DubininRadushkevich)与动力学方程(准一级、准二级和颗粒内扩散)来评价苦荞茶对水溶液中铅、铜、镉、锌、铬离子吸附方式及行为。响应面法是一种数学建模的优化方法,能回归拟合各因素与实验结果之间的函数关系,从而确定实验因素及其交互作用对目标值的影响程度。采用响应面法考察目标离子初始浓度(A)、吸附剂颗粒大小(B)、吸附剂投加量(C)和吸附时间(D)四个因素对苦荞茶吸附水溶液中铅、铜、镉、锌、铬离子能力的影响作用及程度。等温吸附方程显示,苦荞茶对水溶液中铅、铜、镉、锌、铬离子吸附方式以多层吸附方式为主,伴有其他吸附类型,苦荞茶对目标重金属吸附量排序为:铅>镉>铜>锌>铬,即为:30.67>16.18>13.85>10.81>8.43mg·g~(-1)。动力学方程与苦荞茶扫描电镜(SEM)提示,苦荞茶对水溶液中铅、铜、镉、锌、铬离子吸附过程符合准二级动力学,其吸附速率由液膜扩散和颗粒内扩散作用共同控制,而且苦荞茶表面疏松的结构出现表面趋于平滑,孔洞出现融合的现象。能谱分析(EDS)与傅里叶红外光谱(FTIR)证实了水溶液中铅、铜、镉、锌、铬离子被苦荞茶所吸附,苦荞茶中—OH,—CH2,—CH3,CO,—NH,—C—O,CH基团参与水溶液中铅、铜、镉、锌、镉离子结合吸附作用并存在同一类型的基团吸附结合不同目标离子的现象。响应面法构建考察因素影响苦荞茶对水溶液中铅、铜、镉、锌、铬离子去除能力模型,其调整回归决定系数分别为Adj R2Pb=97.10,Adj R2Cu=98.44,Adj R2Cd=94.55,Adj R2Zn=92.71,Adj R2Cr=97.02,说明非线性模型可用来评价考察因素对苦荞茶吸附水溶液中铅、铜、镉、锌、铬离子影响作用。响应面法分析表明,考察因素[离子初始浓度(A)、吸附剂颗粒大小(B)、吸附剂投加量(C)和吸附时间(D)]对铅、铜、镉、锌、铬离子去除率影响作用大小排序为:铅离子(A>D>B>C)、铜离子(A>C>D>B)、镉离子(A>B>C>D)、锌离子(B>C>A>D)、铬离子(C>B>D>A)。研究结果说明,苦荞茶对水溶液中铅、铜、镉、锌、铬离子具有良好的吸附作用,为苦荞茶拓展新的应用途径提供了参考依据。
        Biosorption,with many advantages such as low-cost of sources,good adsorption effect,easily desorption,good recycling and being environmental-friendly,has been regarded as a cost-effective technology for heavy metals uptake at low metal concentrations.In this paper,the potentials and mechanisms of biosorption of lead ion,copper ion,cadmium ion,zinc ion and chromium ion in the single-ion aqueous solution using tartary buckwheat tea powders were investigated by spectral analysis.Scanning Electron Microscope(SEM),Energy Dispersive Spectrometer(EDS)and Fourier Transform Infrared Spectroscopy(FTIS)were used to characterize tartary buckwheat tea powders before and after the adsorption processes to identify the functional groups and elements which had changed,furthermore,to explore the possible mechanisms of the biosorption.The models of the adsorption isotherms(Langmuir,Freundlich,Temkin and Dubinin-Radushkevich)and the adsorption kinetics(pseudofirst order,pseudo-second order and intraparticle diffusion equation)were used to fit the adsorption behaviors.Response surface methodology is a collection of statistical and mathematical techniques based on fitting apolynomial equation to the experimental data.It can be well applied when a response or a set of responses of interest are affected by several factors.The response surface methodology was applied to evaluate the combined effects of various factors,namely initial metal ion concentration(A),adsorbent particle size(B),adsorbent dose(C)and contact time(D)on the removal rates of lead ion,copper ion,cadmium ion,zinc ion and chromium ion from aqueous solution using tartary buckwheat tea powders.The results of isotherm models indicated that the biosorption was mainly heterogeneous adsorption,accompanying other adsorption behaviors.The models of kinetic revealed that biosorption processes fitted a pseudo-second kinetic well,which suggests that the adsorption rates were controlled by effects of film diffusion and intraparticle process and the surface of tartary buckwheat tea powders changed into smoothed and melted.The lead ion,copper ion,cadmium ion,zinc ion and chromium ion onto surface of tartary buckwheat tea powders were confirmed by Energy Dispersive Spectrometer.The Fourier transform infrared spectra results exhibited that —OH,—CH2,—CH3,C O, —NH,—C—O,C H played major roles on removal lead ion,copper ion,cadmium ion,zinc ion and chromium ion using tartary buckwheat tea powders in single-ion aqueous solution.The results showed that the five values of the nonlinear models of coefficient constant were Adj R2Pb=97.10,Adj R2Cu=98.44,Adj R2Cd=94.55,Adj R2Zn=92.71 and Adj R2Cr=97.02,respectively for removal rates of lead ion,copper ion,cadmium ion,zinc ion and chromium ion in the aqueous solution using tartary buckwheat tea powders under conditions of various factors,which could navigate the design space for various factors on effects of biosorption the metal ions from aqueous solution.The effects of factors were in order as A>D>B>Con removal rate lead ion,A>C>D>Bon removal rate copper ion,A>B>C>Don removal rate cadmium ion,B>C>A>Don removal rate zinc ion and C>B>D>Aon removal rate chromium ion,respectively by tartary buckwheat tea powders from single-ion aqueous solution.The study of results provided evidences that tartary buckwheat tea powders can be used for removing lead ion,copper ion,cadmium ion,zinc ion and chromium ion from single-ion aqueous solution.
引文
[1] Ekere N R,Agwogie A B,Ihedioha J N.International Journal of Phytoremediation,2016,18(2):116.
    [2] Manzoor Q,Nadeem R,Iqbal M,et al.Bioresource Technology,2013,132(2):446.
    [3] Pillai S S,Mullassery M D,Fernandez N B,et al.Ecotoxicology&Environmental Safety,2013,92(3):199.
    [4] Areco M M,Hanela S,Duran J,et al.Journal of Hazardous Materials,2012,213-214(3):123.
    [5] Lee Y C,Chang S P.Bioresour Technol,2011,102(9):297.
    [6] WAN Shun-li,XUE Yao,MA Zhao-zhao,et al(万顺利,薛瑶,马钊钊,等).Environmental Science(环境科学),2014,35(10):3782.
    [7] Thines K R,Abdullah E C,Mubarak N M,et al.Renewable&Sustainable Energy Reviews,2017,67:257.
    [8] DUAN Hao-ping,ZHANG Dong-ying,GONG Shu-jing,et al(段浩平,张冬英,龚舒静,等).Southwest China Journal of Agricultural Sciences(西南农业科学),2014,27(3):1260.
    [9] Zengdi W,Ping Y,Rongjun Q.Food Chem.,2013,136(3-4):1508.
    [10] Flouty R,Estephane G.Journal of Environmental Management,2012,111(6):106.
    [11] Javaid A,Bajwa R,Shafique U,et al.Biomass&Bioenergy,2011,35(5):1675.
    [12] Ekere N R,Agwogie A B,Ihedioha J N.International Journal of Phytoremediation,2016,18(2):116.
    [13] Cobas M,Sanromán M A,Pazos M.Bioresource Technology,2014,160:166.
    [14] Ferreira S L,Bruns R E,Ferreira H S,et al.Analytica Chimica Acta,2007,597(2):179.
    [15] Liu Xin,Chen Zhaoqiong,Han Bin,et al.Ecotoxicology&Environmental Safety,2018,150:251.
    [16] Boudechiche N,Yazid H,Trari M,et al.Environmental Science&Pollution Research,2017,(62):1.
    [17] HUANG Xue-qin,LI Tian-yong,GUO Shi,et al(黄雪琴,李天勇,郭诗,等).China Environmental Science(中国环境科学),2017,37(9):3363.
    [18] JI Ze-hua,FENG Chong-ling,LI Liu-gang(冀泽华,冯冲凌,李刘刚).Environmental Chemistry(环境化学),2017,36(1):123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700