大兴安岭北部主要树种生长季根际土壤氮素含量特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of nitrogen content in rhizosphere soil of main tree species in northern part of Daxinganling during growing seasons
  • 作者:丁令智 ; 满秀玲 ; 肖瑞晗
  • 英文作者:DING Lingzhi;MAN Xiuling;XIAO Ruihan;College of Forestry, Northeast Forestry University;
  • 关键词:樟子松 ; 兴安落叶松 ; 白桦 ; 山杨 ; 根际土壤氮素含量 ; 大兴安岭北部 ; 黑龙江漠河
  • 英文关键词:Pinus sylvestris var.mongolica;;Larix gmelinii;;Betula platyphylla;;Populus davidiana;;nitrogen content in rhizosphere soil;;northern of Greater Khingan Range;;Mohe in Heilongjiang province
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:东北林业大学林学院;
  • 出版日期:2019-01-21 11:46
  • 出版单位:中南林业科技大学学报
  • 年:2019
  • 期:v.39;No.212
  • 基金:国家自然科学基金项目(31770488)
  • 语种:中文;
  • 页:ZNLB201902011
  • 页数:8
  • CN:02
  • ISSN:43-1470/S
  • 分类号:70-76+97
摘要
为了探讨大兴安岭地区主要树种(樟子松、兴安落叶松、白桦和山杨)根际土壤氮素的富集程度和差异性,选用抖落法采集根际和非根际土壤样品,对其全氮、铵态氮与硝态氮含量特征进行研究。结果表明:1)4个树种根际土壤全氮含量5—10月波动在1.22~5.43 g·kg-1之间,最大值均在5月;根际土壤铵态氮和硝态氮分别波动在22.41~53.75 mg·kg-1和0.79~2.06 mg·kg-1之间,含量均在7、8月较低,且兴安落叶松根际土壤月平均铵态氮和硝态氮含量均为最高。2)研究区无机氮素以铵态氮为主,占95%以上;根际土壤全氮、铵态氮和硝态氮含量均显著(P <0.05)高于非根际土壤,分别高出101.77%、29.26%和9.07%;兴安落叶松根际土壤全氮富集率达101.25%,铵态氮、硝态氮富集率均最高为39.37%和15.34%;樟子松根际土壤全氮、铵态氮、硝态氮富集率分别为95.98%、34.86%和7.84%;白桦全氮的富集率最高为125.73%,铵态氮、硝态氮富集率为30.30%和7.31%;山杨根际土壤氮素富集率最小。3)根际土壤铵态氮与全氮、硝态氮均呈极显著正相关,而全氮与硝态氮之间相关性不显著。4)4个树种根际土壤对氮素养分含量均具有明显的正根际效应,其中针叶树种对无机氮素的富集能力强于阔叶树种,且兴安落叶松对氮素的富集能力最强。因此,在森林经营和调整林分结构时可适当调整兴安落叶松树种比例,以提高森林生产力。
        In order to investigate the enrichment and difference of nitrogen in the rhizosphere soils of the major tree species(Pinus sylvestris var. mongolica, Larix gmelinii, Betula platyphylla, and Populus davidiana) in the Greater Xing'an Mountains, the rheological and non-rhizosphere soil samples were collected by using shake-off method, and the content characteristics of total nitrogen, ammonium nitrogen and nitrate nitrogen were studied. The results were showed as follows: 1)The total nitrogen contents in the rhizosphere soils of the four tree species fluctuated between 1.22 and 5.43 g·kg-1 from May to October, their maximum values all appeared in May;Ammonium nitrogen and nitrate nitrogen in rhizosphere soil ?uctuated between 22.41-53.75 mg·kg-1 and 0.79-2.06 mg·kg-1 respectively,and their contents were lower in July and August, and the monthly average ammonium and nitrate nitrogen contents of the rhizosphere soil of L. gmelinii both were the highest. 2) The inorganic nitrogen in the study area was dominated by ammonium nitrogen, accounting for more than 95%; The contents of total nitrogen, ammonium nitrogen and nitrate nitrogen in rhizosphere soil all were significantly higher than those in non-rhizosphere soil(P < 0.05), which were 101.77%, 29.26% and 9.07% higher respectively; The total nitrogen enrichment rate of rhizosphere soil of L.gmelinii reached 101.25%, and the ammonium nitrogen and nitrate nitrogen enrichment rates of L.gmelinii were the highest at 39.37% and 15.34%; The enrichment rates of total nitrogen, ammonium nitrogen and nitrate nitrogen in the rhizosphere soil of P. sylvestris var. mongolica were 95.98%, 34.86% and 7.84% respectively; The enrichment rate of total nitrogen in rhizosphere soil of B. platyphylla was 125.73%, ammonium nitrogen and nitrate nitrogen in the soils were 30.30% and 7.31%respectively; The nitrogen enrichment rate in rhizosphere soil of P. davidiana was the lowest. 3) The ammonium nitrogen content in the rhizospheric soil was significantly positively correlated with total nitrogen and nitrate nitrogen, but the correlation between total nitrogen and nitrate nitrogen was not significant; 4) The rhizosphere soil of four tree species had obvious positive rhizosphere effects on nitrogen nutrient contents, of them, that of coniferous tree rhizosphere soil had stronger ability to enrich inorganic nitrogen than broad-leaved tree, and that of L. gmelinii had the strongest ability to enrich nitrogen. Therefore, the proportion of L. gmelinii species can be adjusted appropriately in forest management and forest structure adjustment to improve forest productivity.
引文
[1]詹媛媛,薛梓瑜,任伟,等.干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征[J].生态学报,2009,29(1):59-66.
    [2]宋贤冲,项东云,杨中宁,等.广西桉树人工林根际土壤微生物群落功能多样性[J].中南林业科技大学学报,2017,37(1):58-61.
    [3]TOBERMAN H,CHEN C,XU Z.Rhizosphere effects on soil nutrient dynamics and microbial activity in an Australian tropical lowland rainforest[J].Soil Research,2011,49(7):652-660.
    [4]YAKOV K.Priming effects:Interactions between living and dead organic matter[J].Soil Biology&Biochemistry,2010,42(9):1363-1371.
    [5]董兆佳,孟磊.海南蕉园根际与非根际土壤氮素含量特征[J].中国农学通报,2010,26(6):309-312.
    [6]孙波,廖红,苏彦华,等.土壤-根系-微生物系统中影响氮磷利用的一些关键协同机制的研究进展[J].土壤,2015,47(2):210-219.
    [7]周媛媛,杜明新,周向睿,等.毛乌素沙漠南缘紫穗槐根际与非根际氮素含量特征[J].草业科学,2013,30(4):515-520.
    [8]陈海滨,马秀丽,陈志彪,等.南方稀土矿区水土保持植物根际土壤碳氮及pH特征[J].土壤学报,2016,53(5):1334-1341.
    [9]刘相君,冯冲凌,吴晓芙,等.铅锌尾矿区土壤有机菌肥改良后植物根际菌群的特性及多样性研究[J].中南林业科技大学学报,2017,37(6):32-38.
    [10]刘顺,盛可银,刘喜帅,等.陈山红心杉根际土壤有机碳、氮含量及根际效应[J].生态学杂志,2017,36(7):1957-1964.
    [11]邱权,李吉跃,王军辉,等.西宁南山4种灌木根际和非根际土壤微生物、酶活性和养分特征[J].生态学报,2014,34(24):7411-7420.
    [12]许翠清,陈立新,颜永强,等.温带森林土壤铵态氮、硝态氮季节动态特征[J].东北林业大学学报,2008,36(10):19-21.
    [13]李菊梅,王朝辉,李生秀.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报,2003,40(2):232-238.
    [14]金微微,张会慧,李鑫,等.小黑杨和桑树叶片光合特性对不同氮素形态的响应[J].中南林业科技大学学报,2018,38(5):98-103.
    [15]PHILLIPS R P,FAHEY T J.The Influence of Soil Fertility on Rhizosphere Effects in Northern Hardwood Forest Soils[J].Soilence Society of America Journal,2008,72(2):453-461.
    [16]杨阳,刘秉儒.荒漠草原不同植物根际与非根际土壤养分及微生物量分布特征[J].生态学报,2015,35(22):7562-7570.
    [17]王丽丽,邵雪梅,黄磊,等.黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应[J].植物生态学报,2005,29(3):380-385.
    [18]MASSACCESI L,BENUCCI G M N,GIGLIOTTI G,et al.Rhizosphere effect of three plant species of environment under periglacial conditions(Majella Massif,central Italy)[J].Soil Biology&Biochemistry,2015,89:184-195.
    [19]范川,李贤伟,张健.台湾桤木林草复合模式根际与非根际氮特征[J].南京林业大学学报(自然科学版),2014,38(5):73-78.
    [20]SIX J,CONANT R T,PAUL E A,et al.Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils[J].Plant&Soil,2002,241(2):155-176.
    [21]王晋,庄舜尧,朱兆良.不同种植年限水田与旱地土壤有机氮组分变化[J].土壤学报,2014,51(2):286-294.
    [22]白军红,王庆改,丁秋祎,等.不同芦苇沼泽湿地土壤全氮季节动态变化和氮储量研究(简报)[J].草业学报,2008,17(2):162-165.
    [23]陈龙池,廖利平.根系分泌物生态学研究[J].生态学杂志,2002,21(6):57-62.
    [24]杜明新,张丽静,梁坤伦,等.高寒沙化草地不同灌木根际与非根际土壤氮素、有机碳含量特征[J].中国草地学报,2011,33(4):18-23.
    [25]陈立新.东北山地人工林生态系统土壤肥力的研究[M].哈尔滨:东北林业大学出版社,2000.
    [26]安慧,韦兰英,刘勇,等.黄土丘陵区油松人工林和白桦天然林细根垂直分布及其与土壤养分的关系[J].植物营养与肥料学报,2007,13(4):611-619.
    [27]胡霭堂,陆景陵.植物营养学[M].2版.中国农业大学出版社,2003.
    [28]王大鹏,郑亮,吴小平,等.旱地土壤硝态氮的产生、淋洗迁移及调控措施[J].中国生态农业学报,2017,25(12):1731-1741.
    [29]孙志高,刘景双,牟晓杰.三江平原小叶章湿地土壤中硝态氮和铵态氮含量的季节变化特征[J].农业系统科学与综合研究,2010,26(3):277-282.
    [30]周旺明,郭焱,朱保坤,等.长白山森林生态系统大气氮素湿沉降通量和组成的季节变化特征[J].生态学报,2015,35(1):158-164.
    [31]TAN C S,DRURY C F,SOULTANI M,et al.Effect of controlled drainage and tillage on soil structure and tile drainage nitrate loss at the field scale[J].Water Science&Technology,1998,38(4):103-110.
    [32]张玉霞,姚拓,王国基,等.高寒生态脆弱区不同扰动生境草地植被及土壤无机氮变化特征[J].草业学报,2014,23(4):245-252.
    [33]肖好燕,刘宝,余再鹏,等.亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态[J].应用生态学报,2017,28(3):730-738.
    [34]NADELHOFFER K J,ABER J D,MELILLO J M.Fine Roots,Net Primary Production,and Soil Nitrogen Availability:A New Hypothesis[J].Ecology,1985,66(4):1377-1390.
    [35]HERMAN D J,JOHNSON K K,JAEGER C H,et al.Root Influence on Nitrogen Mineralization and Nitrification in,Rhizosphere Soil[J].Soil Science Society of America Journal,2006,70(5):60-66.
    [36]朱光艳,胡同欣,李飞,等.火后不同年限兴安落叶松林土壤氮的矿化速率及其影响因素[J].中南林业科技大学学报,2018,38(3):88-96.
    [37]沈仁芳,赵学强.土壤微生物在植物获得养分中的作用[J].生态学报,2015,35(20):6584-6591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700