四象限探测器数字跟踪通信复合接收机设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Tracking and Communication Composite Digital Receiver for Four Quadrant Detectorn
  • 作者:王睿扬 ; 于笑楠 ; 佟首峰 ; 吴天琦 ; 陈星驰
  • 英文作者:WANG Ruiyang;YU Xiaonan;TONG Shoufeng;WU Tianqi;CHEN Xingchi;School of Optoelectronic Engineering,Changchun University of Science and Technology;National and Local Joint Engineering Research Center of Space Optoelectronics Technolog,Changchun University of Science and Technology;
  • 关键词:激空间激光通信 ; 四象限探测器 ; 数字接收机 ; 跟踪通信复合 ; 探测灵敏度 ; 位置分辨力
  • 英文关键词:space laser communication;;four-quadrant detector;;digital receiver;;tracking and communication complex;;detection sensitivity;;position resolution
  • 中文刊名:CGJM
  • 英文刊名:Journal of Changchun University of Science and Technology(Natural Science Edition)
  • 机构:长春理工大学光电工程学院;长春理工大学空间光电技术国家地方联合工程研究中心;
  • 出版日期:2019-06-15
  • 出版单位:长春理工大学学报(自然科学版)
  • 年:2019
  • 期:v.42
  • 基金:国家重点研发计划(2016YFB0501100)
  • 语种:中文;
  • 页:CGJM201903010
  • 页数:9
  • CN:03
  • ISSN:22-1364/TH
  • 分类号:47-55
摘要
随着微纳卫星技术的迅速发展,为实现空间激光通信接收终端的轻小型化设计,采用四象限探测器(Quadrant Detector,QD)作为通信接收机的探头。设计的四象限探测器数字跟踪通信复合接收机,首先通过四象限探测器将光信号转换为电信号后,然后经过前置跨阻放大电路进行信号放大并转换为电压信号,再由模数转换(Analogue-to-Digital Conversion,ADC)将电信号转换为数字信号,最后通过现场可编辑门列阵(Field-Programmable Gate Array,FPGA)的数字算法完成跟踪与通信相关的信号处理。通过理论分析得到在1064nm波段,当误码率为10~(-6),通信速率为10Mbps,信噪比为90时,探测灵敏度为-45dBm;在光斑半径为400μm时,位置分辨力为6.29μm,实现了0.0016的细分能力。通过对探测信号链的仿真、光斑位置分辨力的仿真、通信解调与数据时钟恢复(Clock Data Recover,CDR)的仿真以及对光斑位置与脱靶量解算的仿真,进一步验证了接收机跟踪与通信复合功能的实现。最后通过实验测试得到在误码率为10~(-6),通信速率为10Mbps时,探测灵敏度为-30d Bm,并对光斑位置探测的误差进行了标定。数字接收机的性能参数满足通信系统的基本要求,基于FPGA的软件设计完成了单探测器跟踪与通信功能的复合,并实现了接收机的数字化,满足接收机的轻小型化设计的要求。
        With the rapid development of micro-nano satellite technology,in order to realize the lightweight design of space laser communication receiving terminal,the Quadrant Detector(QD) is used as the probe of communication receiver. In this paper,a four-quadrant detector digital tracking communication composite receiver is designed. First,the optical signal is converted into electrical signal through the four-quadrant detector,then the signal is amplified and converted into voltage signal through the pre-trans-resistance amplifier circuit,and then the electrical signal is converted into digital signal by analog-to-digital conversion. Finally,it can be edited through the field. Field-Programmable Gate Array(FPGA) digital algorithm completes tracking and communication-related signal processing. The theoretical analysis shows that the detection sensitivity is-45 dBm when the bit error rate is 10~(-6),the communication rate is 10 Mbps and the signal-to-noise ratio is 90,and the position resolution is 6.29 um when the spot radius is one-fifth of the detector's photosensitive surface radius,which achieves the subdivision ability of 0.0016. Through the simulation of detection signal chain,spot position resolution,communication demodulation and data clock recovery,as well as the calculation of spot position and miss distance,the realization of Receiver Tracking and communication composite function isfurther verified. Finally,the experimental results show that the detection sensitivity is-30 dBm when the bit error rate is 10~(-6) and the communication rate is 10 Mbps,and the error of spot position detection is calibrated. The performance parameters of digital receiver meet the basic requirements of communication system. The software design based on FPGA completes the combination of single detector tracking and communication functions,and realizes the digitization of the receiver to meet the requirements of the light and miniaturization design of the receiver.
引文
[1] Ferraro M S,Rabinovich W S,Clark W R,et al.Impact ionization engineered avalanche photodiode arrays for free-space optical communication[J]. Optical Engenering,2016,55(11):1116091-111609199.
    [2] Ferraro M S,Mahon R,Rabinovich W S,et al. InGaAs Avalanche Photodiode Arrays for Simultaneous Communications and Tracking[J]. Proc. of SPIE Vol,2012,8162:81620D1-81620D8.
    [3] Ferraro M S,Mahon R,Rabinovich W S,et al. Integration of a concentric five element InAlAs/InGaAs avalanche photodiode array in a stabilized bi-static optical assembly[J]. Proc.of SPIE Vol.8126,2014,9080:90801D1-90801D8.
    [4]李海飞.半主动激光制导导引头检测与控制电路的研制[D].长沙:国防科学技术大学,2005:45-52.
    [5]吴佳彬.基于四象限探测器的高精度激光光斑位置检测技术研究[D].北京:中国科学院大学(中国科学院长春光学精密机械与物理研究所),2016:1-10.
    [6]谷野.基于四象限探测器的跟踪与通信复用技术研究[D].长春:长春理工大学,2017:1-15.
    [7]吴凯.基于QD的跟踪与通信复合探测技术研究[D].长春:长春理工大学,2017:1-12.
    [8] YU X N,TONG S F,DONG Y,et al. Design and performance testing of an avalanche photodiode receiver with multiplication gain control algorithm for intersatellite laser communication[J]. Optical Engenering 2016,55(6):0671091-0671096.
    [9]姜会林,佟首峰.空间激光通信技术与系统[M].北京:国防工业出版社,2010:24-36.
    [10] WU J B,CHEN Y S,GAO S J,et al. Improved measurement accuracy of spot position on an InGaAs quadrant detector[J].Appl.Opt.,2015,54(27):8049-8054.
    [11]张雷,张国玉,刘云清.影响四象限探测器精度的因素[J].中国激光,2012,39(6):06050071-7.
    [12]宋哲宇,付芸,范新坤,等.四象限探测器定位精度的分析与仿真[J].长春理工大学学报:自然科学版,2018,41(2):41-44.
    [12]杜勇,数字调制解调技术的MATLAB与FPGA实现[M].北京:电子工业出版社,2015:62-74
    [13]韩城,白宝兴,杨华民,等.自由空间激光通信四象限探测器性能研究[J].中国激光,2009,36(8):2030-2034.
    [14]赵馨,佟首峰,姜会林.四象限探测器的特性测试[J].光学精密工程,2010,18(10):2164-2170.
    [15]韩文波,杨晓茂.基于四象限探测器的红外导引头目标捕获和跟踪系统[J].长春理工大学学报:自然科学版,2016,39(1):36-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700