植物超积累重金属的生理机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in physiological mechanisms of heavy metal hyperaccumulation by plants
  • 作者:薛欢 ; 刘志祥 ; 严明理
  • 英文作者:XUE Huan;LIU Zhixiang;YAN Mingli;Hunan Provincial Key Laboratory of Forestry Biotechnology,Central South University of Forestry and Technology;International Cooperation Base of Science and Technology Innovation on Forestry Resource Biotechnology of Hunan Province,Central South University of Forestry and Technology;Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests,Central South University of Forestry and Technology;College of Life Science,Hunan University of Science and Technology;
  • 关键词:重金属 ; 超积累植物 ; 植物修复 ; 吸收 ; 转运 ; 解毒 ; 隔离
  • 英文关键词:heavy metal;;hyperaccumulator;;phytoremediation;;absorption;;transportation;;detoxification;;sequestration
  • 中文刊名:AJSH
  • 英文刊名:Biotic Resources
  • 机构:中南林业科技大学林业生物技术湖南省重点实验室;中南林业科技大学森林资源生物技术湖南省国际科技创新合作基地;中南林业科技大学森林有害生物防治湖南省重点实验室;湖南科技大学生命科学学院;
  • 出版日期:2019-07-30 09:15
  • 出版单位:生物资源
  • 年:2019
  • 期:v.41;No.168
  • 基金:国家自然科学基金面上项目(编号:31671601);; 湖南省教育厅科学研究重点项目(编号:16A223);湖南省教育厅科学研究创新平台开放基金项目(编号:17K035)
  • 语种:中文;
  • 页:AJSH201904002
  • 页数:9
  • CN:04
  • ISSN:42-1886/Q
  • 分类号:12-20
摘要
土壤重金属污染已经成为一个全球性问题。重金属超积累植物在修复土壤重金属污染中具有重要的应用前景。重金属超积累植物通常具备三个基本特征,即:根系具有从土壤中吸收重金属的强大能力、能从根到地上部分高效转运重金属、在叶片中能解毒和隔离大量重金属。本文总结了重金属超积累植物吸收、转运、隔离和解毒重金属的生理机制研究进展,以期为进一步阐明植物超积累重金属的机制及其在植物修复中的应用提供参考。
        Heavy metal pollution in soil has become a global problem. Heavy metal hyperaccumulators have important application prospects in phytoremediation. They usually have the following three basic characteristics:the strong ability of roots to absorb heavy metals from the soil,efficient transportation of heavy metals from the roots to the aboveground parts,detoxification and isolation of large amounts of heavy metals in the leaves. This paper summarizes the research progress on the physiological mechanism of the absorption,transportation,isolation and detoxification of heavy metals in hyperaccumulating plants,in order to further elucidate the mechanism of heavy metal hyperaccumulation by plants and provide reference for its application in phytoremediation.
引文
[1]Chen N C,Zheng Y J,He X F,et al.Analysis of the report on the national general survey of soil contamina-tion[J].J Agro-Environ Sci,2017,36(9):1689-1692.陈能场,郑煜基,何晓峰,等.《全国土壤污染状况调查公报》探析[J].农业环境科学学报,2017,36(9):1689-1692.
    [2]Rascio N,Navariizzo F.Heavy metal hyperaccumulat-ing plants:How and why do they do it?And what makes them so interesting?[J].Plant Sci,2011,180(2):169-181.
    [3]Stinchcomb G E,Messner T C,Stewart R M,et al.Estimating fluxes in anthropogenic lead using alluvial soil mass-balance geochemistry,geochronology and ar-chaeology in eastern USA[J].Anthropocene,2014,8:25-38.
    [4]Adriano D C.Role of phytoremediation in the establish-ment of a global soil remediation network[C]//Internati-nal seminar on using plants for environmental remedia-tion proceedings,1997:1-25.
    [5]Muchuweti M,Birkett J W,Chinyanga E,et al.Heavy metal content of vegetables irrigated with mix-tures of wastewater and sewage sludge in Zimbabwe:im-plications for human health[J].Agric Ecosyst Environ,2005,112(1):41-48.
    [6]Signes-Pastor A J,Carey M,Meharg A A.Inorganic arsenic in rice-based products for infants and young chil-dren[J].Food Chem,2016,191:128-134.
    [7]Zhu Y G,Williams P N,Meharg A A.Exposure to in-organic arsenic from rice:a global health issue?[J].En-viron Pollut,2008,154(2):169-171.
    [8]Oghenerobor B A,Gladys O O,Tomilola D O.Heavy metal pollutants in wastewater effluents:sources,ef-fects and remediation[J].Adv Biosci Bioeng(NY),2014,2(4):37-43.
    [9]Costa M B,Tavares F V,Martinez C B,et al.Accu-mulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.:potential application to envi-ronmental monitoring and phytoremediation[J].Ecotox-icol Environ Saf,2018,155:117-124.
    [10]Liu L W,Li W,Song W P,et al.Remediation tech-niques for heavy metal-contaminated soils:principles and applicability[J].Sci Total Environ 2018,633:206-219.
    [11]Chen W Y,Li H X.Cost-effectiveness analysis for soil heavy metal contamination treatments[J].Water Air Soil Pollut,2018,229(4):126.
    [12]Hamidian A H,Zareh M,Poorbagher H,et al.Heavy metal bioaccumulation in sediment,common reed,algae,and blood worm from the Shoor river,Iran[J].Toxicol Ind Health,2016,32(3):398-409.
    [13]Roosens N,Verbruggen N,Meerts P,et al.Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe[J].Plant Cell En-viron,2003,26(10):1657-1672.
    [14]Ashraf M,Ozturk M,Ahmad M S A.Plant adaptation and phytoremediation[M].Dordrecht:Springer Nether-lands,2010:35-58.
    [15]Brooks R R,Lee J,Reeves R D,et al.Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J].J Geochem Explor,1977,7(77):49-57.
    [16]Rascio N.Metal accumulation by some plants growing on zinc-mine deposits[J].Oikos,1977,29(2):250-253.
    [17]Wang W H,Luo X G,Wu F Q,et al.Evaluating indi-ces for concentration abilities of heavy metal plant accu-mulators[J].Environ Sci Technol,2017,40(8):189-196.王卫红,罗学刚,武锋强,等.重金属富集植物的富集能力评价指标[J].环境科学与技术,2017,40(8):189-196.
    [18]Wei S H,Zhou Q X,Koval P V.Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L.and their significance to phytoremediation[J].Sci Total Environ,2006,369(1-3):441-446.
    [19]He S Y,Yang X E,He Z L,et al.Morphological and physiological responses of plants to cadmium toxicity:a review[J].Pedosphere,2017,27(3):421-438.
    [20]?elik J,Aksoy A,Leblebici Z.Metal hyperaccumulat-ing Brassicaceae from the ultramafic area of Yahyal?in Kayseri province,Turkey[J].Ecol Res,2018,33(4):705-713.
    [21]MacNair M R.The hyperaccumulation of metals by plants[J].Adv Bot Res,2003,40:63-105.
    [22]Faucon M P,Shutcha M N,Meerts P.Revisiting cop-per and cobalt concentrations in supposed hyperaccumula-tors from SC Africa:influence of washing and metal con-centrations in soil[J].Plant Soil,2007,301(1/2):29-36.
    [23]Faucon M P,Colinet G,Mahy G,et al.Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C.tenuis(Scrophulariace-ae)in SC Africa[J].Plant Soil,2009,317(1/2):201-212.
    [24]Neugebauer K,Broadley M R,El-serehy H A,et al.Variation in the angiosperm ionome[J].Physiol Plant,2018,163(3):306-322.
    [25]Sheoran V,Sheoran A S,Poonia P.Role of hyperaccu-mulators in phytoextraction of metals from contaminated mining sites:a review[J].Crit Rev Environ Sci Tech-nol,2011,41(2):168-214.
    [26]Luo Q,Sun L N,Hu X M.Metabonomics study on root exudates of Cd hyperaccumulator Sedum alfredii[J].Chin J Anal Chem,2015,43(1):7-12.罗庆,孙丽娜,胡筱敏.镉超富集植物东南景天根系分泌物的代谢组学研究[J].分析化学,2015,43(1):7-12.
    [27]Chen G C,Liu Y Q,Wang R M,et al.Cadmium ad-sorption by willow root:the role of cell walls and their subfractions[J].Environ Sci Pollut Res,2013,20(8):5665-5672.
    [28]Dalcorso G,Manara A,Furini A.An overview of heavy metal challenge in plants:from roots to shoots[J].Metallomics,2013,5(9):1117-1132.
    [29]Gallego S M,Pena L B,Barcia R A,et al.Unravel-ling cadmium toxicity and tolerance in plants:insight into regulatory mechanisms[J].Environ Exp Bot,2012,83(5):33-46.
    [30]Rodriguez-Hernandez M C,Bonifas I,Alfaro-De la Torre M C,et al.Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typha latifolia:a study of two pore channel(TPC1)gene responses[J].Environ Exp Bot,2015,115(6):38-48.
    [31]Takahashi R,Ishimaru Y,Senoura T,et al.The OsN-RAMP1 iron transporter is involved in Cd accumulation in rice[J].J Exp Bot,2011,62(14):4843-4850.
    [32]Bereczky Z,Wang H Y,Schubert V,et al.Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J].J Biol Chem,2003,278(27):24697-24704.
    [33]Eapen S,D'Souza S F.Prospects of genetic engineer-ing of plants for phytoremediation of toxic metals[J].Biotechnol Adv,2005,23(2):97-114.
    [34]Migeon A,Blaudez D,Wilkins O,et al.Genome-wide analysis of plant metal transporters,with an emphasis on poplar[J].Cell Mol Life Sci,2010,67(22):3763-3784.
    [35]Assun??o A G L,Bleeker P,Wilma M,et al.Intra-specific variation of metal preference patterns for hy-peraccumulation in Thlaspi caerulescens:evidence from binary metal exposures[J].Plant Soil,2008,303(1/2):289-299.
    [36]Hall J L.Cellular mechanisms for heavy metal detoxifica-tion and tolerance[J].J Exp Bot,2002,53(366):1-11.
    [37]Ismael M A,Elyamine A M,Moussa M G,et al.Cad-mium in plants:uptake,toxicity,and its interactions with selenium fertilizers[J].Metallomics,2019,11(2):255-277.
    [38]Rajkumar M,Sandhya S,Prasad M N V,et al.Per-spectives of plant-associated microbes in heavy metal phytoremediation[J].Biotechnol Adv,2012,30(6):1562-1574.
    [39]Shin M N,Shim J,You Y,et al.Characterization of lead resistant endophytic Bacillus sp.MN3-4 and its po-tential for promoting lead accumulation in metal hyperac-cumulator Alnus firma[J].J Hazard Mater,2012,199-200:314-320.
    [40]Hou D D,Wang K,Liu T,et al.Unique rhizosphere micro-characteristics facilitate phytoextraction of multi-ple metals in soil by the hyperaccumulating plant Sedum alfredii[J].Environ Sci Technol,2017,51(10):5675-5684.
    [41]Yang X E,Long X X,Ni W Z.Physiological and molecular mechanisms of heavy metal uptake by hy-peraccumulting plants[J].Plant Nutr Fertil Sci,2002,8(1):8-15.杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制[J].植物营养与肥料学报,2002,8(1):8-15.
    [42]Lu L L,Tian S K,Yang X E,et al.Enhanced root-to-shoot translocation of cadmium in the hyperaccumulat-ing ecotype of Sedum alfredii[J].J Exp Bot,2008,59(11):3203-3213.
    [43]Deng T H B,van der Ent A,Tang Y T,et al.Nickel hyperaccumulation mechanisms:a review on the current state of knowledge[J].Plant Soil,2018,423(1/2):1-11.
    [44]Papoyan A,Kochian L V.Identification of Thlaspi caerulescens genes that may be involved in heavy metal hy-peraccumulation and tolerance.Characterization of a novel heavy metal transporting ATPase[J].Plant Physi-ol,2004,136(3):3814-3823.
    [45]Ove?ka M,Taká?T.Managing heavy metal toxicity stress in plants:biological and biotechnological tools[J].Biotechnol Adv,2014,32(1):73-86.
    [46]Milner M J,Kochian L V.Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a mod-el system[J].Ann Bot,2008,102(1):3-13.
    [47]Milner M J,Seamon J,Craft E,et al.Transport prop-erties of members of the ZIP family in plants and their role in Zn and Mn homeostasis[J].J Exp Bot,2013,64(1):369-381.
    [48]Xu J,Sun J H,Du L G,et al.Comparative transcrip-tome analysis of cadmium responses in Solanum nigrum and Solanum torvum[J].New Phytol,2012,196(1):110-124.
    [49]Seigneurin-Berny D,Gravot A,Auroy P,et al.HMA1,a new Cu-ATPase of the chloroplast envelope,is essential for growth under adverse light conditions[J].J Biol Chem,2006,281(5):2882-2892.
    [50]Moreno I,Norambuena L,Maturana D,et al.AtH-MA1 is a thapsigargin-sensitive Ca2+/heavy metal pump[J].J Biol Chem,2008,283(15):9633-9641.
    [51]Abdel-Ghany S E,Müller-MouléP,Niyogi K K,et al.Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts[J].Plant Cell,2005,17(4):1233-1251.
    [52]Hussain D,Haydon M J,Wang Y W,et al.P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis[J].Plant Cell,2004,16(5):1327-1339.
    [53]Tian S K,Lu L L,Labavitch J,et al.Cellular seques-tration of cadmium in the hyperaccumulator plant spe-cies Sedum alfredii[J].Plant Physiol,2011,157(4):1914-1925.
    [54]Wang L,Ji B,Hu Y H,et al.A review on in situ phy-toremediation of mine tailings[J].Chemosphere,2017,184:594-600.
    [55]Chi C N,Ding G H.Research progress of the molecu-lar biology in heavy metal tolerance of plants[J].Bio-technol Bull,2017,33(3):6-11.迟春宁,丁国华.植物耐重金属的分子生物学研究进展[J].生物技术通报,2017,33(3):6-11.
    [56]Bothe H,S?omka A.Divergent biology of facultative heavy metal plants[J].J Plant Physiol,2017,219:45-61.
    [57]Assuncao A G L,Schat H,Aarts M G M.Thlaspi caerulescens,an attractive model species to study heavy metal hyperaccumulation in plants[J].New Phytol,2003,159(2):351-360.
    [58]Noctor G,Lelarge-Trouverie C,Mhamdi A.The me-tabolomics of oxidative stress[J].Phytochemistry,2015,112:33-53.
    [59]Alscher R G,Erturk N,Heath L S.Role of superoxide dismutases(SODs)in controlling oxidative stress in plants[J].J Exp Bot,2002,53(372):1331-1341.
    [60]Apel K,Hirt H.Reactive oxygen species:metabolism,oxidative stress,and signal transduction[J].Annu Rev Plant Biol,2004,55(1):373-399.
    [61]Wang S F,Zhao Y,Guo J H,et al.Antioxidative re-sponse in leaves and allelochemical changes in root exu-dates of Ricinus communis under Cu,Zn,and Cd stress[J].Environ Sci Pollut Res,2018,25(32):32747-32755.
    [62]Hu P J,Li Z,Zhong D X,et al.Research progress on the phytoextraction of heavy metal contaminated soils in China[J].Acta Phytophysiol Sin,2014,50(5):577-584.胡鹏杰,李柱,钟道旭,等.我国土壤重金属污染植物吸取修复研究进展[J].植物生理学报,2014,50(5):577-584.
    [63]He H,Li Y,He L F.Aluminum toxicity and tolerance in Solanaceae plants[J].S Afr J Bot,2019,123:23-29.
    [64]Haydon M J,Cobbett C S.Transporters of ligands for essential metal ions in plants[J].New Phytol,2007,174(3):499-506.
    [65]Subramanian V K,Deepe G Jr.Metallothioneins:emerging modulators in immunity and infection[J].Int JMol Sci,2017,18(10).
    [66]Saxena G,Purchase D,Mulla S I,et al.Phytoremedia-tion of heavy metal-contaminated sites:eco-environmen-tal concerns,field studies,sustainability issues,and fu-ture prospects[M]//Reviews of Environmental Contam-ination and Toxicology.Cham:Springer International Publishing,2019:71-131.
    [67]Bhargava A,Carmona F F,Bhargava M,et al.Ap-proaches for enhanced phytoextraction of heavy metals[J].J Environ Manag,2012,105:103-120.
    [68]Ruta L L,Lin Y F,Kissen R,et al.Anchoring plant metallothioneins to the inner face of the plasma mem-brane of Saccharomyces cerevisiae cells leads to heavy metal accumulation[J].PLoS One,2017,12(5):e0178393.
    [69]Wycisk K,Kim E J,Schroeder J I,et al.Enhancing the first enzymatic step in the histidine biosynthesis path-way increases the free histidine pool and nickel tolerance in Arabidopsis thaliana[J].FEBS Lett,2004,578(1-2):128-134.
    [70]Callahan D L,Baker A J M,Kolev S D,et al.Metal ion ligands in hyperaccumulating plants[J].J Biol Inorg Chem,2006,11(1):2-12.
    [71]Deschamps P,Kulkarni P P,Gautam-Basak M,et al.The saga of copper(II)-L-histidine[J].Coord Chem Rev,2005,249(9):895-909.
    [72]Adamidis G C,Aloupi M,Kazakou E,et al.Intra-spe-cific variation in Ni tolerance,accumulation and translo-cation patterns in the Ni-hyperaccumulator Alyssum lesbiacum[J].Chemosphere,2014,95:496-502.
    [73]Kr?mer U,Pickering I J,Prince R C,et al.Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species[J].Plant Physiol,2000,122(4):1343-1354.
    [74]Choudhury M R,Islam M S,Ahmed Z U,et al.Phy-toremediation of heavy metal contaminated buriganga riverbed sediment by Indian mustard and marigold plants[J].Environ Prog Sustain Energy,2016,35(1):117-124.
    [75]Luo Z B,He J L,Polle A,et al.Heavy metal accumu-lation and signal transduction in herbaceous and woody plants:paving the way for enhancing phytoremediation efficiency[J].Biotechnol Adv,2016,34(6):1131-1148.
    [76]Huang X Y,Zhao F J.A defensin-like protein regulates cadmium accumulation in rice[J].Bull Bot,2018,53(4):451-455.黄新元,赵方杰.植物防御素调控水稻镉积累的新机制[J].植物学报,2018,53(4):451-455.
    [77]Luo J S,Huang J,Zeng D L,et al.A defensin-like pro-tein drives cadmium efflux and allocation in rice[J].Nat Commun,2018,9(1):645.
    [78]Vázquez-Nú?ez E,Pe?a-Castro J M,Fernández-Luque?o F,et al.A review on genetically modified plants designed to phytoremediate polluted soils:bio-chemical responses and international regulation[J].Pe-dosphere,2018,28(5):697-712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700