超材料完美吸波器研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in the development of metamaterial perfect absorber
  • 作者:杜永好 ; 曹曙桦 ; 王琦 ; 张大伟
  • 英文作者:DU Yonghao;CAO Shuhua;WANG Qi;ZHANG Dawei;Engineering Research Center of Optical Instruments and Systems (MOE), University of Shanghai for Science and Technology;Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology;
  • 关键词:超材料 ; 吸波器 ; 电磁响应 ; 带宽
  • 英文关键词:metamaterial;;absorber;;electromagnetic response;;bandwidth
  • 中文刊名:GXYQ
  • 英文刊名:Optical Instruments
  • 机构:上海理工大学教育部光学仪器与系统工程研究中心;上海理工大学上海市现代光学系统重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:光学仪器
  • 年:2019
  • 期:v.41;No.228
  • 基金:国家自然科学基金(61378060、61205156);; 国家重大科学仪器设备(2012YQ170004);; 上海市教育委员会科研创新项目(14YZ095)
  • 语种:中文;
  • 页:GXYQ201902014
  • 页数:9
  • CN:02
  • ISSN:31-1504/TH
  • 分类号:83-91
摘要
超材料是一种人工复合材料,一般是由金属和电介质周期性排列的单元结构所构成,它具有天然材料不具备的某些特殊电磁性质。超材料的电磁响应不仅由它的构成材料决定,也与其谐振单元的微结构和排列方式有关。基于超材料设计的完美吸波器通过合理改变谐振单元的微结构参数和排列方式可以实现对特定波长的电磁波接近100%的吸收。超材料完美吸波器(PMA)具备设计灵活、响应可调、厚度小、吸波强等优点,通过设计合理的结构可以实现超宽带宽和极窄带宽,可以广泛应用于隐身材料、频率选择表面、太赫兹成像、智能通信、光电检测等领域。本文结合国内外研究现状,综述了PMA的研究近况与发展前景,以期获得对PMA更全面的理解。最后对PMA的发展趋势和应用前景进行了深入探讨,多功能、结构简单的新型PMA是未来的发展趋势。
        The metamaterial is an artificial composite material. It is generally composed of a unit structure in which metals and dielectrics are periodically arranged. It has certain special electromagnetic properties that are not available in the natural materials. The electromagnetic response of metamaterials is determined not only by its constituent materials but also by its microstructure and arrangement. The perfect absorber based on metamaterial design can achieve close to 100% absorption of electromagnetic waves of a specific wavelength by rationally changing the microstructure parameters and arrangement of the resonant units. Perfect metamaterial absorber(PMA), with the advantages of flexible design, adjustable response, small thickness, strong wave absorption, etc., is possible to achieve ultra-wide bandwidth and extremely narrow bandwidth through a well-designed structure, which can be widely used for stealth materials, frequency selective surfaces, terahertz imaging, intelligent communications, photoelectric detection, and other fields. This review summarizes the research status and development prospects of PMA on the basis of comprehensive research status at home and abroad in order to obtain a more comprehensive understanding of PMA. Finally, the PMA development trend and application prospects are thoroughly discussed. The new PMA with multi-function and simple structure is the future development trend.
引文
[1]SCHURIG D,MOCK J J,JUSTICE B J,et al.Metamaterial electromagnetic cloak at microwave frequencies[J].Science,2006,314(5801):977-980.
    [2]CUI Y X,HE Y R,JIN Y,et al.Plasmonic and metamaterial structures as electromagnetic absorbers[J].Laser&Photonics Reviews,2014,8(4):495-520.
    [3]LIU N,MESCH M,WEISS T,et al.Infrared perfect absorber and its application as plasmonic sensor[J].Nano Letters,2010,10(7):2342-2348.
    [4]MCCRINDLE I J H,GRANT J,DRYSDALE T D,et al.Multi-spectral materials:hybridisation of optical plasmonic filters and a terahertz metamaterial absorber[J].Advanced Optical Materials,2014,2(2):149-153.
    [5]LIANG Q Q,YU W X,ZHAO W C,et al.Numerical study of the meta-nanopyramid array as efficient solar energy absorber[J].Optical Materials Express,2013,3(8):1187-1196.
    [6]LANDY N I,SAJUYIGBE S,MOCK J J,et al.Perfect metamaterial absorber[J].Physical Review Letters,2008,100(20):207402.
    [7]WEN Q Y,ZHANG H W,XIE Y S,et al.Dual band terahertz metamaterial absorber:design,fabrication,and characterization[J].Applied Physics Letters,2009,95(24):241111.
    [8]YE Q W,LIU Y,LIN H,et al.Multi-band metamaterial absorber made of multi-gap SRRs structure[J].Applied Physics A,2012,107(1):155-160.
    [9]LANDY N I,BINGHAM C M,TYLER T,et al.Design,theory,and measurement of a polarizationinsensitive absorber for terahertz imaging[J].Physical Review B,2009,79(12):125104.
    [10]TAO H,LANDY N I,BINGHAM C M,et al.Ametamaterial absorber for the terahertz regime:design,fabrication and characterization[J].Optics Express,2008,16(10):7181-7188.
    [11]TAO H,BINGHAM C M,STRIKWERDA A C,et al.Highly flexible wide angle of incidence terahertz metamaterial absorber:design,fabrication,and characterization[J].Physical Review B,2008,78(24):241103.
    [12]CHANG Y C,KILDISHEV A V,NARIMANOV E E,et al.Metasurface perfect absorber based on guided resonance of a photonic hypercrystal[J].Physical Review B,2016,94(15):155430.
    [13]TAO H,BINGHAM C M,PILON D,et al.A dual band terahertz metamaterial absorber[J].Journal of Physics D:Applied Physics,2010,43(22):225102.
    [14]BAI Y,ZHAO L,JU D Q,et al.Wide-angle,polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial[J].Optics Express,2015,23(7):8670-8680.
    [15]ZHANG B Y,HENDRICKSON J,GUO J P.Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures[J].Journal of the Optical Society of America B,2013,30(3):656-662.
    [16]HU F R,WANG L,QUAN B G,et al.Design of a polarization insensitive multiband terahertz metamaterial absorber[J].Journal of Physics D:Applied Physics,2013,46(19):195103.
    [17]LIU Z Q,LIU G Q,FU G L,et al.Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial[J].Optics Express,2016,24(5):5020-5025.
    [18]保石,罗春荣,张燕萍,等.基于树枝结构单元的超材料宽带微波吸收器[J].物理学报,2010,59(5):3187-3191.
    [19]CUI Y X,FUNG K H,XU J,et al.Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J].Nano Letters,2012,12(3):1443-1447.
    [20]WANG Z L,ZHANG Z M,QUAN X J,et al.Perfect absorption in the broad solar spectrum with Bi2Te3hyperbolic metamaterials[C]//Advanced Photonics2017.New Orleans,Louisiana,United States:OSA,2017.
    [21]CHOWDHURY D R,SINGH R,O’HARA J F,et al.Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor[J].Applied Physics Letters,2011,99(23):231101.
    [22]ZHU J,HAN J G,TIAN Z,et al.Thermal broadband tunable terahertz metamaterials[J].Optics Communications,2011,284(12):3129-3133.
    [23]DU K K,LI Q,ZHANG W C,et al.Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers[J].IEEE Photonics Journal,2015,7(3):6800908.
    [24]RAETHER H.Surface plasmons[M]//H?HLER G.Springer tracts in modern physics.Berlin:Springer,1988.
    [25]GRANDE M,VINCENTI M A,STOMEO T,et al.Graphene-based perfect optical absorbers harnessing guided mode resonances[J].Optics Express,2015,23(16):21032-21042.
    [26]ZHANG S,WANG Y F,WANG S H,et al.Wavelength-tunable perfect absorber based on guidedmode resonances[J].Applied Optics,2016,55(12):3176-3181.
    [27]NAIR R R,BLAKE P,GRIGORENKO A N,et al.Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308.
    [28]GRANDE M,VINCENTI M A,STOMEO T,et al.Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings[J].Optics Express,2014,22(25):31511-31519.
    [29]WANG X,MA Q,WU L M,et al.Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus[J].Optics Express,2018,26(5):5488-5496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700