1970-2016年青藏高原岗扎日冰川变化与物质平衡遥感监测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Area Changes and Mass Balance of Glaciers in Kangzhag Ri of the Tibetan Plateau from 1970 to 2016 Derived from Remote Sensing Data
  • 作者:张震 ; 刘时银
  • 英文作者:ZHANG Zhen;LIU Shiyin;School of Geomatics, Anhui University of Science and Technology;Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security;Institute of International Rivers and Eco-Security, Yunnan University;State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;
  • 关键词:可可西里 ; 岗扎日 ; 冰川变化 ; 物质平衡 ; 遥感
  • 英文关键词:Hoh Xil;;Kangzhag Ri;;glacier change;;mass change;;remote sensing
  • 中文刊名:DQXX
  • 英文刊名:Journal of Geo-Information Science
  • 机构:安徽理工大学测绘学院;云南省国际河流与跨境生态安全重点实验室;云南大学国际河流与生态安全研究院;中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室;
  • 出版日期:2018-09-25
  • 出版单位:地球信息科学学报
  • 年:2018
  • 期:v.20;No.133
  • 基金:国家自然科学基金项目(41701087、41701061);; 科技部科技基础性工作专项项目(2013FY111400);; 云南大学引进人才科研项目(YJRC3201702)~~
  • 语种:中文;
  • 页:DQXX201809015
  • 页数:12
  • CN:09
  • ISSN:11-5809/P
  • 分类号:134-145
摘要
可可西里处于青藏高原腹地,是青藏高原自然环境的交接与过渡地带。近年来该区域冰川物质平衡可能有从西向东由正转负的趋势,但是其过渡地带岗扎日地区冰川状态未知。本研究利用地形图、SRTM、ASTER和Landsat等资料分析了岗扎日地区冰川面积变化和物质平衡变化,并对可可西里地区冰川变化空间规律进行了探讨,结果表明:(1)1970-2016年岗扎日冰川总面积年均缩小率为0.08±0.02%。2006年后冰川退缩趋势减缓。(2)1970-2012年岗扎日冰川平均减薄-8.64±0.30 m,体积减少1.45±0.06 km3,平均物质平衡为-0.21±0.01 m w.e. a-1。冰川物质平衡趋势由负转正(1970-1999年:-0.34±0.01 m w.e. a-1;1999-2012:0.16±0.02 w.e. a-1)。(3)东南、南、西南朝向作为迎风坡,1970年以来其冰川物质亏损较小,1999-2012年呈现强烈的正平衡。冰川面积变化滞后于物质平衡变化,东朝向和东南朝向冰川面积缩小率最大,主要是因为冰川冰舌较长,末端所处的海拔较低。(4)气温升高是岗扎日冰川1970-1999年呈现负物质平衡状态的主因,降水增多是1999-2012年正平衡状态的主因。(5)可可西里地区冰川1970s以来面积年均缩小率从西向东不断增大、物质平衡下降,与西风环流和季风环流相关,但局地气候也影响冰川变化和物质平衡。
        Hoh Xil is located in the central Tibetan Plateau, and is the transitional zone of the natural environment of the Tibetan Plateau. In recent years, the mass balance of the glaciers in this region has a trend of positive turning to negative from west to east. However, mass change of glaciers in Kangzhag Ri, as the transition zone of Hoh Xil region, is unknown due to its inaccessibility and high labour costs. Glacier mass changes in Kangzha Ri were determined using geodetic methods based on digital elevation models(DEMs) derived from the topographic map(1970), ASTER(2012) and Shuttle Radar Terrain Mission(SRTM) data(2000). Glacier area changes between 1970 and 2016 were derived from the topographic map, ASTER, and Landsat data. Results show that Kangzha Ri has 50 glaciers with an area of 162.6 ± 1.3 km2 in 2016. Average glacier area change was observed to be-0.08±0.02% a-1 from 1970 to 2016. Weak area shrinkage of glaciers by 0.04±0.30% a-1 during2006-2012 and 0.01±0.38% a-1 during 2012-2016. The glaciers in this region have experienced an overall loss of 1.45±0.06 km3 in ice volume or-0.21±0.01 m water equivalent(w.e.) a-1 from 1970 to 2012. The glaciers lost mass at a rate of-0.34 ± 0.01 m w.e.a-1 during 1970-1999, while gained mass at a rate of 0.16±0.02 m w.e.a-1 during 1999-2012. Glaciers with southeastern, southern, southwestern aspect showed a slight mass loss during1970-2012, while gained most mass during 1999-2012. However, Glaciers with southeastern and eastern aspect showed more stable in the ice cover area. Because these glaciers have a long tongue with low terminal altitudes with a little mass supply from accumulation region. Air temperature rises contribute to the loss of glacier mass during 1970-1999, while precipitation increase contributes to the gain of glacier mass during 1999-2012.Glacier area reduction from 1970 s shows a trend of low to high from the west to east, and the mass balance gradually decreases from the west to east. Glacier variations in Kangzhag Ri were not only related to westerly circulation and monsoon circulation, but also related to local circulation. Recent mass change might be a response to the changing atmospheric circulation pattern.
引文
[1] Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate Change Will Affect the Asian Water Towers[J]. Science, 2010,328(5984):1382-1385.
    [2] Radi?V, Hock R. Glaciers in the Earth's Hydrological Cycle:Assessments of glacier mass and runoff changes on global and regional scales[J]. Surveys in Geophysics,2013,35(3):813-837.
    [3] Kaser G, Grosshauser M, Marzeion B. Contribution potential of glaciers to water availability in different climate regimes[J]. Proceedings of the National Academy of Sciences, 2010,107(47):20223-20227.
    [4] Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. The Cryosphere, 2013,7(4):1263-1286.
    [5] Neckel N, Braun A, Kropá?ek J, et al. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau,by means of differential X-band SAR interferometry[J].The Cryosphere, 2013,7(5):1623-1633.
    [6] Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area(Nepal Himalaya)derived from stereo imagery[J]. The Cryosphere, 2011,5(2):349-358.
    [7]李炳元.青海可可西里地区自然环境[M].北京:科学出版社,1996.[Li B Y. Natureal Environment in the Hoh Xil Region of Qinghai[M]. Beijing:Science Press, 1996.]
    [8] Wei J F, Liu S Y, Guo W Q, et al. Surface-area changes of glaciers in the Tibetan Plateau interior area since the1970s using recent Landsat images and historical maps[J]. Annals of Glaciology, 2014,55(66):213-222.
    [9] Lin H, Li G, Cuo L, et al. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000-2014[J]. Scientific reports,2017,7(1):1-9.
    [10] Neckel N, Kropá?ek J, Bolch T, et al. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements[J]. Environmental Research Letters, 2014,9:1-7.
    [11] Neckel N, Braun A, Kropá?ek J, et al. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau,by means of differential X-band SAR interferometry[J].The Cryosphere, 2013,7(5):1623-1633.
    [12] Chen, A A, Wang N L, Li Z, et al. Region-Wide glacier mass budgets for the Tanggula Mountains between 1969and 2015 Derived from Remote Sensing Data[J]. Arctic Antarctic, and Alpine Research, 2017,49(4):551-568.
    [13]刘时银,姚晓军,郭万钦,等.基于第二次冰川编目的中国冰川现状[J].地理学报,2015,70(1):3-16.[Liu S Y, Yao X J, Guo W Q, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015,70(1):3-16.]
    [14] Li S J, Li S D. Quaternary Glacial and Environmental Changes in the region of Hoh Xil, Qinghai Province[J].Journal of Glaciology and Geocryology, 1992,14(4):316-324.
    [15] Zhang Z, Xu J L, Liu S Y, et al. Glacier changes since the early 1960s, eastern Pamir, China[J]. Journal of Mountain Science, 2016,13(2):276-291.
    [16] Pieczonka T, Bolch T, Wei J, et al. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment(Central Tien Shan)revealed by 1976 KH-9 Hexagon and 2009SPOT-5 stereo imagery[J]. Remote Sensing of Environment, 2013,130:233-244.
    [17] Zhang Z, Liu S Y, Wei J F, et al. Mass change of glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from1971/76 to 2013/14 as derived from remote sensing data[J]. PLOS One, 2016,11(1):1-18.
    [18] Wu K P, Liu S Y, Jiang Z L, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories[J]. The Cryosphere,2018,12(1):103-121.
    [19] Nuth C, K??b A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. The Cryosphere, 2011,5(1):271-290.
    [20] Gardelle J, Berthier E, Arnaud Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing[J]. Journal of Glaciology, 2012,58(208):419-422.
    [21] Zemp M, Jansson P, Holmlund P, et al. Reanalysis of multi-temporal aerial images of Storglaci?ren, Sweden(1959-99)-Part 2:Comparison of glaciological and volumetric mass balances[J]. The Cryosphere, 2010,4(3):345-357.
    [22] Fischer A. Comparison of direct and geodetic mass balances on a multi-annual time scale[J]. The Cryosphere,2011,5(1):107-124.
    [23] Sapiano J J, Harrison W D, Echelmeyer K A. Elevation,volume and terminus changes of nine glaciers in North America[J]. Journal of Glaciology, 1998,44(146):119-135.
    [24] Elsberg D H, Harrison W D, Echelmeyer K A, et al. Quantifying the effects of climate and surface change on glacier mass balance[J]. Journal of Glaciology, 2001,47(159):649-658.
    [25] Huss M. Density assumptions for converting geodetic glacier volume change to mass change[J]. The Cryosphere,2013,7(3):877-887.
    [26] GB/T 1234.1-2008,国家基本比例尺地图编绘规范,第一部分:1:25 000 1:50 000 1:100 000地形图编绘规范[S].[Chinese National Standard:Compilation specifications for national fundamental scale maps. Part 1:Compilation soecifications for 1:25 000/1:50 000/1:100 000 topographic maps, GB/T 12343.1-2008, General Administration of Quality Supervision, Inspection and Quarantine, Beijing,China, 2008.]
    [27] Rodr Guez E, Morris C S, Belz J E. A global assessment of the SRTM performance[J]. Photogrammetric Engineering&Remote Sensing, 2006,72(3):249-260.
    [28] Kolecka N, Kozak J. Assessment of the accuracy of SRTM C-and X-Band high mountain elevation data:A case study of the Polish Tatra Mountains[J]. Pure and Applied Geophysics, 2013,171(6):897-912.
    [29] Toutin T. ASTER DEMs for geomatic and geoscientific applications:A review[J]. International Journal of Remote Sensing, 2008,29(7):1855-1875.
    [30] Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area(Nepal Himalaya)derived from stereo imagery[J]. Cryosphere, 2011,5(2):349-358.
    [31] Wei J F, Liu S Y, Guo W Q, et al. Changes in glacier volume in the North bank of the Bangong Co Basin from1968 to 2007 based on historical topographic maps,SRTM, and ASTER Stereo Images[J]. Arctic, Antarctic,and Alpine Research, 2015,47(2):301-311.
    [32] Nuimura T, Fujita K, Yamaguchi S, et al. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region,Nepal Himalaya, 1992-2008[J]. Journal of Glaciology,2012,58(210):648-656.
    [33]王宁练,张祥松.近百年来山地冰川波动与气候变化[J].冰川冻土,1992,14(3):242-250.[Wang N L, Zhang X S.Mountain glacier fluctuations and climatic change during the last 100 years[J]. Journal of Glaciology and Geocryology, 1992,14(3):242-250.]
    [34] Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances,2000-2016[J]. Nature Geoscience, 2017,10(9):668-673.
    [35]宗继彪,叶庆华,田立德.基于ICESat/GLAS, SRTM DEM和GPS观测青藏高原纳木那尼冰面高程变化(2000-2010年)[J].科学通报,2014,59(21):2108–2118.[Zong J B, Ye Q H, Tian L D. Recent Naimona'Nyi Glacier surface elevation changes on the Tibetan Plateau based on ICESat/GLAS, SRTM DEM and GPS measurements[J].Chinese Science Bulletin(Chinese Version), 2014,59(21):2108-2118.]
    [36] Li G, Lin H. Recent decadal glacier mass balances over the Western Nyainqentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry[J]. Global and Planetary Change, 2017,149:177-190.
    [37] Li G, Lin H, Ye Q H. Heterogeneous decadal glacier downwasting at the Mt. Everest(Qomolangma)from2000 to 2012 based on multi-baseline bistatic SAR interferometry[J]. Remote Sensing of Environment, 2018,206:336-349.
    [38]高永鹏,姚晓军,安丽娜,等. 2000-2010年祁连山冰川冰储量变化[J].干旱地区研究,2018,35(2):325-333.[Gao Y P, Yao X J, An L N, et al. Change of ice volume in the Qilian Mountains during the Period from 2000 to 2010[J]. Arid Zone Research, 2018,35(2):325-333.]
    [39]邢武成,李忠勤,张慧,等. 1959年来中国天山冰川资源时空变化[J].地理学报,2017,72(9):1594-1605.[Xing W C,Li Z Q, Zhang H, et al. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959[J]. Acta Geographica Sinica, 2017,72(9):1594-1605.]
    [40]冯童,刘时银,许君利,等.1968-2009年叶尔羌河流域冰川变化—基于第一、二次中国冰川编目数据[J].冰川冻土,2015,37(1):1-13.[Feng T, Liu S Y, Xu J L, et al. Glacier change of Yarkant River Basin from 1968 to 2009 derived from the first and second glacier inventories of China[J]. Journal of Glaciology and Geocryology, 2015,37(1):1-13.]
    [41] Bao W J, Liu S Y, Wei J F, et al. Glacier changes during the past 40 years in the West Kunlun Shan[J]. Journal of Mountain Science, 2015,12(2):344-357.
    [42] Ye Q H, Zong J B, Tian L D. Glacier changes on the Tibetan Plateau derived from Landsat imagery:Mid-1970s-2013[J]. Journal of Glaciology, 2017,63(238):273-287.
    [43] Liu Q, Guo W Q, Nie Y, et al. Recent glacier and glacial lake changes and their interactions in the Bugyai Kangri,southeast Tibet. Annals of Glaciology, 2016,57(71):61-69.
    [44]叶庆华,陈锋,姚檀栋,等.近30年来喜马拉雅山脉西段纳木那尼峰地区冰川变化的遥感监测研究.遥感学报,2007,11(4):511-520.[Ye Q H, Chen F, Yao T D et al. Tupu of glacier variations western Himalayas, in the Mt.Naimona'nyi region, in the last three decades[J]. Journal of Remote Sensing, 2007,11(4):511-520.]
    [45] Wu K P, Liu S Y, Guo W Q, et al. Glacier change in the western Nyainqentanglha Range, Tibetan Plateau using historical maps and Landsat imagery:1970-2014[J]. Journal of Mountain Science, 2016,13(8):1358-1374.
    [46]聂勇,张镱锂,刘林山,等.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J].地理学报,2010,65(1):13-28.[Nie Y, Zhang Y L, Liu L S, et al. Monitoring glacier change based on remote sensingin the Mt. Qomolangma National Nature Preserve, 1976-2006[J]. Acta Geographica Sinica, 2010,65(1):13-28.]
    [47]孙美平,刘时银,姚晓军,等.近50年来祁连山冰川变化——基于中国第一、二次冰川编目数据[J].地理学报,2015,70(9):1402-1414.[Sun M P, Liu S Y, Yao X J, et al.Glacier changes in the Qilian Mountains in the past half century:Based on the revised First and Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015,70(9):1402-1414.]
    [48] Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012,2(9):663-667.
    [49]王有清,蒲健辰,张永亮,等.马兰冰芯记录的青藏高原中部现代升温变化特征[J].冰川冻土,2003,25(2):130-134.[Wang Y Q, Pu J C, Zhang Y L, et al. Characteristic of present warming change recorded in Malan Ice Core,Central Tibetan Plateau[J]. Journal of Glaciology and Geogryology, 2003,25(2):130-134.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700