基于WRF模式和CloudSat卫星资料对黄淮下游一次强对流天气过程的诊断分析和数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation analysis of strong convective weather processes in Huanghuai River based on WRF model and CloudSat satellite data
  • 作者:况祥 ; 银燕 ; 陈景华 ; 肖辉
  • 英文作者:KUANG Xiang;YIN Yan;CHEN Jinghua;XIAO Hui;Meteorological Disaster Warning and Forecast Assessment of Collaborative Innovation Center/CMA Key Laboratory of Aerosols and Precipitation Cloud,Nanjing University of Information Science & Technology;Institute of Tropical and Marine Meteorology;
  • 关键词:深对流 ; 云物理结构 ; CloudSat ; WRF
  • 英文关键词:Deep convective;;Cloud physical structure;;CloudSat;;WRF
  • 中文刊名:QXKX
  • 英文刊名:Journal of the Meteorological Sciences
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室;热带海洋气象研究所;
  • 出版日期:2018-05-29 10:30
  • 出版单位:气象科学
  • 年:2018
  • 期:v.38
  • 基金:国家重点基础研究发展计划(973计划)项目(2014CB441403);; 江苏高校优势学科建设工程资助项目(PAPD)
  • 语种:中文;
  • 页:QXKX201803006
  • 页数:11
  • CN:03
  • ISSN:32-1243/P
  • 分类号:55-65
摘要
利用Cloud Sat卫星资料和WRF中尺度模式,结合NCEP再分析资料及FY2G静止气象卫星资料,研究了发生在黄淮地区的一次深对流天气过程,分析了此次过程的天气特征、动力结构,重点分析了该次强对流过程中各水成物的时空演变特征。结果表明:(1)黄淮下游地区处于副高西北边缘,温度高,湿度大,对流潜势好。在地面冷锋和低层切变线的抬升触发下,气流不断辐合上升,同时高层冷平流与低层暖湿空气为强对流的发展提供了热力不稳定条件;(2)使用静止卫星TBB产品可以很好的定位、追踪深对流系统,但单一的TBB产品无法分辨深对流云和较厚的高云。本文结合Cloud Sat卫星资料和TBB产品把剖面上的云分为3种:非对流云(NDC),一般深对流云(DC),深对流核(DCC);(3)深对流云核(DCC)位于对流系统南部边缘,在3种云中DCC中冰相粒子粒径大、数浓度多、冰水含量大,且其最大值区域都位于12 km高度附近,这一区域可能是对流云内冰晶凝华增长、凇附增长、聚并增长形成大冰相粒子的关键发生区;(4)耦合了NSSL双参方案的WRF模式对于本次过程体现了较好的模拟效果,并通过模拟再现了此次天气过程中水成物的分布特征,发现本次过程深对流云中存在过冷水累积带特征。冰核核化形成的冰晶通过碰并过程形成雪晶,霰又由雪晶碰撞冻结过冷水滴以及过冷雨滴冻结产生,之后不断增长转化形成冰雹,雹增长到足够大后降落,其中雪晶和过冷水累积带对霰(雹胚)及雹的产生及增长至关重要。
        By using the Cloud Sat satellite data and the WRF mesoscale model,combined with NCEP reanalysis data and FY2 G stationary meteorological satellite data,a deep convective weather process occurred in the Huanghuai area was studied. The weather characteristics,dynamic structure,temporal and spatial evolution characteristics of hydrometeors in the severe convective weather processwere analyzed emphatically. Results show that:( 1) The downstream of Huanghuai river located in the northwest edge of western Pacific subtropical high,which had high temperature,high humidity and good condition of convection potential. The ground cold front and low-level shear line lifted the air flow,and made it continue convergence rising,and the configuration of high-level cold and low-level warm and humid air provided a thermal instability for the development of strong convection.( 2) The stationary satellites TBB product could locate and track deep convection system,but a single TBB products could not distinguish between deep convective clouds and thick high clouds,so this paper combined Cloud Sat satellite data and TBB products and classified clouds to three classification as Non-Convective Cloud( NDC),general Deep Convective Cloud( DC) and Deep Convective Core( DCC).( 3) The DCC was located at the southern edge of the convective system. The particle size of the ice particles was larger,the ice number concentration was more,the ice water content was larger in the DCC,and the maximum area is near12 km. This area may be the key occurrence area of the formation of large ice particles.( 4) The WRF model showed a favorable effect for this process and showed the distribution characteristics of hydrometeors. An accumulation of supercooled water and hail cycle growth characteristics in the cloud was found.Snow crystals generated through collision and coalescence of ice crystals,which were generated by nucleation of ice nucleus,and graupel generated by the snow crystal aggregated freeze droplets and with supercooled rain drops freezing. Then,graupel transformed into hail by cycle of growth,and hail would shoot when hail increased to large enough. The snow crystals and accumulation of supercooled water is critical to the generation and growth of the grape and hail.
引文
[1]Quante M.The role of clouds in the climate system.J.Phys.IV France,2004,121:61-86.
    [2]Stephens G L,Vane D G,Boain R J,et al.The cloudsat mission and the A-train.Bull.Amer.Meteor.Soc.,2002,83(12):1771-1790.
    [3]GEWEX Cloud System Science Team.The GEWEX cloud system study(GCSS).Bull.Amer.Meteor.Soc.,1993,74(3):387-399.
    [4]LI Xingyu,GUO Xueliang,ZHU Jiang.Climatic features of cloud water distribution and cycle over China.Adv.Atmos.Sci.,2008,25(3):437-446.
    [5]Rosenfeld D,Lohmann U,Raga G B,et al.Flood or drought:how do aerosols affect precipitation?Science,2008,321(5894):1309-1313.
    [6]苏爱芳.黄淮中西部深对流云的演变规律和组织结构[博士论文].南京:南京信息工程大学,2015.SU Aifang.Evolution and structure of deep convective clouds in central and western Huanghuai Region[D].Nanjing:Nanjing University of Information Science&Technology(in Chinese),2015.
    [7]刘学华,王立静,何丽萍,等.浙江省2月份连续降雹过程诊断.气象科学,2011,31(1):46-53.LIU Xuehua,WANG Lijing,HE Liping,et al.Diagnosis analysis of continuous hail weather in February in Zhejiang.Journal of the Meteorological Sciences(in Chinese),2011,31(1):46-53.
    [8]翟菁,黄勇,胡雯,等.强对流系统中对流云合并的观测分析.气象科学,2011,31(1):100-106.ZHAI Jing,HUANG Yong,HU Wen,et al.Observation and analysis on cumulus merging in severe mesoscale convective system.Journal of the Meteorological Sciences(in Chinese),2011,31(1):100-106.
    [9]周毓荃,赵姝慧.Cloud Sat卫星及其在天气和云观测分析中的应用.南京气象学院学报,2008,31(5):603-614.ZHOU Yuquan,ZHAO Shuhui.Cloud Sat satellite and its application in weather and cloud observation.Journal of Nanjing Institute of Meteorology(in Chinese),2008,31(5):603-614.
    [10]Protat A,Bouniol D,Delano4 J,et al.Assessment of cloudsat reflectivity measurements and ice cloud properties using groundbased and airborne cloud radar observations.J.Atmo.Ocean.Technol.,2009,26(9):1717-1741.
    [11]Barker H W,Korolev A V,Hudak D R,et al.A comparison between Cloud Sat and aircraft data for a multilayer,mixed phase cloud system during the Canadian Cloud Sat-CALIPSO Validation Project.J.Geophys.Res.,2008,113(D8):D00A16.
    [12]Austin R T,Heymsfield A J,Stephens G L.Retrieval of ice cloud microphysical parameters using the Cloud Sat millimeter-wave radar and temperature.J.Geophys.Res.,2009,114(D8):D00A23.
    [13]LUO Yali,ZHANG Renhe,QIAN Weimiao,et al.Intercomparison of deep convection over the Tibetan Plateau—Asian monsoon region and subtropical North America in boreal summer using Cloud Sat/CALIPSO data.J.Climate,2011,24(8):2164-2177.
    [14]韩丁,严卫,叶晶,等.基于Cloud Sat卫星资料分析东太平洋台风的云、降水和热力结构特征.大气科学,2013,37(3):691-704.HAN Ding,YAN Wei,YE Jing,et al.Analyzing cloud,precipitation,and thermal structure characteristics of typhoons in eastern Pacific based on Cloud Sat satellite data.Chinese Journal of Atmospheric Sciences(in Chinese),2013,37(3):691-704.
    [15]WANG Donghai,LI Xiaofan,TAO Weikuo.Torrential rainfall responses to radiative and microphysical processes of ice clouds during a landfall of severe tropical storm Bilis(2006).Meteor.Atmos.Phys.,2010,109(3/4):107-114.
    [16]Powers J G,Klemp J B,Skamarock W C,et al.The weather research and forecasting(WRF)model:Overview,system efforts,and future directions.Bull.Amer.Meteor.Soc.,2017.doi:10.1175/BAMS-D-15-00308.1.(in Press)
    [17]Gilmore M S,Wicker L J.The influence of midtropospheric dryness on supercell morphology and evolution.Mon.Wea.Rev.,1998,126(4):943-958.
    [18]付伟基,陆汉城,王亮,等.WRF模式对弱强迫系统中雷暴预报个例研究.气象科学,2009,29(3):323-329.FU Weiji,LU Hancheng,WANG Liang,et al.A case study of forecasting thunderstorm in the weakly forced system with WRF model.Scientia Meteorologica Sinica(in Chinese),2009,29(3):323-329.
    [19]YU Rucong,WANG Bin,ZHOU Tianjun.Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau.J.Climate,2004,17(13):2702-2713.
    [20]LIU Chunlei,Illingworth A J.Toward more accurate retrievals of ice water content from radar measurements of clouds.J.Appl.Meteor.,2000,39(7):1130-1146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700