脉冲风暴造成的山西北部三次冰雹天气对比分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative Analysis of Three Hail Weather Processes Caused by Pulse Storms in Northern Shanxi Province
  • 作者:杨淑华 ; 赵桂香 ; 程海霞 ; 王一颉 ; 李腊平 ; 宋世华
  • 英文作者:YANG Shuhua;ZHAO Guixiang;CHENG Haixia;WANG Yijie;LI Laping;SONG Shihua;Datong Meteorological Bureau of Shanxi Province;Shanxi Meteorological Observatory;Jincheng Meteorological Bureau of Shanxi Province;Xinrong District Meteorological Station of Datong of Shanxi Province;
  • 关键词:冰雹 ; 多尺度 ; 多普勒雷达 ; 脉冲风暴 ; 对比分析
  • 英文关键词:hail;;multi-scale;;Doppler radar;;pulse storm;;comparative analysis
  • 中文刊名:GSQX
  • 英文刊名:Journal of Arid Meteorology
  • 机构:山西省大同市气象局;山西省气象台;山西省晋城市气象局;山西省大同市新荣区气象局;
  • 出版日期:2019-02-28
  • 出版单位:干旱气象
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金(41475050);; 中国气象局2018年预报员专项“C波段雷达V型缺口特征及在冰雹预警中的应用(CMAY-BY2018-012)”共同资助
  • 语种:中文;
  • 页:GSQX201901009
  • 页数:9
  • CN:01
  • ISSN:62-1175/P
  • 分类号:69-77
摘要
利用加密自动气象站资料、多普勒雷达产品、NCEP/NCAR FNL 1°×1°再分析资料、灾情调查等资料,对2017年出现在山西北部的三次冰雹天气过程进行了对比分析。结果表明:(1)三次脉冲风暴冰雹过程均发生在500 hPa中高纬地区为"两槽一脊"型、槽后偏西北气流的环流背景下,低层切变线或涡旋是主要触发系统。冰雹出现在低层辐合线的东南侧暖区内。低层触发系统不同,大气不稳定度不同,造成的强对流落区和强度差异很大。(2)脉冲风暴冰雹过程中,从低层到高层风向随高度呈现一致的顺时针旋转,从低层到700 h Pa附近风速随高度增加,0~6 km风垂直切变为1×10~(-4)~7×10~(-4)s~(-1),均小于冰雹天气阈值。(3)脉冲风暴的雷达回波呈块状,强回波中心高度位于-10℃等温线所在高度以上,初始高度在7 km以上,上冲云顶高度大于12 km;脉冲风暴的形成、发展和结束与雷暴云顶的上冲、下降和崩溃紧密联系。可以利用上冲云顶的形态判断风暴的生消,但要抬高仰角到8 km左右高度观测,才有助于提前发现脉冲风暴。径向速度场上三次过程有明显差异,表现为降雹持续时间与辐合层厚度密切相关,辐合层越厚降雹越剧烈,持续时间越长;以单体形式在低层出现辐合、高层辐散的速度场发展迅猛程度要比多单体更剧烈,带来的灾害更严重;强对流发生前,VIL最大值大于35 kg·m-2,降雹前VIL出现跃增,跃增量大于29 kg·m-2。(4)基本反射率剖面图上,脉冲风暴产生的旁瓣回波的空间结构表现为与高反射率因子核区垂直,强度小于20 d BZ的弱回波带,旁瓣回波从风暴强中心边缘向低方位角方向伸展。三次过程中,出现旁瓣回波和三体散射的冰雹过程持续时间更长、灾害程度更重。
        The three hail processes in northern Shanxi Province in 2017 were analyzed comparatively using automatic meteorological station data,Doppler radar data,NCEP/NCAR FNL 1° × 1° reanalysis data and disaster investigation data. The results were as follows:( 1) The three processes of hail produced by pulse-storm occurred under the background of atmospheric circulation with the type of"two troughs and one ridge"and northwest airflow in the back of the trough at 500 h Pa,the lower layer mesoscale shear lines or vortex were the main trigger system. Hails appeared in warming areas in the southeast of the mesoscale convergence line in the lower troposphere. The different lower layer mesoscale triggering systems and different atmospheric instability caused different strong convection dropping zones and intensity.( 2) In the processes of hailstorm produced by pulse-storm,the wind direction from lower layer to upper layer rotated clock-wise with height,the wind speed increased with height from lower layer to 700 h Pa level,and the vertical wind shear of 0-6 km ranged from 1 × 10~(-4) to 7 × 10~(-4) s~(-1),which was less than the hail weather threshold.( 3) The radar echoes of the pulse storms were massive,and the strong center height was above the height on which the temperature was~(-1)0 ℃,its initial height was above 7 km,and the overshooting cloud top height was above 12 km. The formation,development and ending of pulse storms were closely linked to the overshooting,sinking and collapse of storm cloud top. The occurance and extinction of the storms could be determined by the shape of over-shooting cloud top,but it's important to raise the elevation to 8 km above in order to find pulse storms ahead of time. From the radial velocity field,it could be seen that there were obvious differences among the three processes. Firstly,the duration of hailstorm was closely related to the thickness of the convergence layer. The thicker the convergence layer,the more intense the hailstorm,and the longer hailstorm lasted. Secondly,the velocity field in the form of single cell convergence in the lower layer and divergence in the upper layer developed more rapidly than that of multiple cells,and it caused more serious disasters. Before the occurrence of strong convection,VIL maximum was greater than 35 kg·m-2,and the VIL had a jump,the jumping increment was greater than 29 kg·m-2.( 4) On the basic reflectance profile,the spatial structure of the side lobe echoes was shown as weak echo zones with an intensity less than 20 d BZ,perpendicular to the core area of the high reflectance factor. The development direction of the side lobe echo was from the central edge of the strong storm to the low azimuth. In the three hail processes,the process with the side lobe echo and three body scattering occurring lasted longer and was more disastrous.
引文
[1]赵桂香,薄燕青,邱贵强,等.黄河中游一次大暴雨的观测分析与数值模拟[J].高原气象,2017,36(2):436-454.
    [2]陈军,李小兰,喻义军,等.贵州铜仁一次大范围高架雷暴降雹天气过程分析[J].干旱气象,2017,35(4):649-656.
    [3]马素艳,韩经纬,斯琴,等.冷涡背景下呼和浩特市冰雹特征分析[J].暴雨灾害,2016,35(6):529-536.
    [4]赵思雄,孙建华,鲁蓉,等.“7. 20”华北和北京大暴雨过程的分析[J].气象,2018,44(3):351-360.
    [5]彭军,周雪英,魏勇.一次春季天气过程中不同降水类型的云图及雷达特征分析[J].沙漠与绿洲气象,2015,9(3):24-30.
    [6]黄俊杰,苟阿宁.一次雹暴过程的地闪特征分析[J].沙漠与绿洲气象,2015,9(4):32-36.
    [7]丁建芳,刘磊,鲍向东,等.三门峡一次冰雹天气多普勒雷达资料分析[J].气象与环境科学,2012,35(3):49-53.
    [8]丁建芳,杜春丽,鲍向东,等.一次冰雹云过程及其冰雹形成机制的模拟研究[J].气象与环境科学,2014,37(2):49-57.
    [9]赵桂香,闫慧,董文晓. 2013年山西5次典型强对流天气分析[J].中国农学通报,2016,32(23):113-121.
    [10]甘璐,郭文利,邓长菊.北京地区两次特大暴雨过程的对比分析[J].干旱气象,2017,35(2):239-249.
    [11]朱轶明,班显秀,刘小东,等.辽宁一次暴雨天气过程的多普勒雷达层状云降水回波特征分析[J].气象与环境科学,2014,37(1):55-61.
    [12]李茜,王咏青,张邵辉,等.一次致雹强风暴的多普勒雷达特征分析[J].气象与环境科学,2012,35(3):1-9.
    [13]王晓君,夏文梅,段鹤,等.三体散射长钉在波段雷达中的应用研究气象[J].气象,2014,40(11):1380-1388.
    [14]杨群,陈关清,方标,等.梵净山一次局地特大暴雨雷达回波特征分析[J].干旱气象,2016,34(5):820-827.
    [15]陈元昭,俞小鼎,陈训来,等. 2015年5月华南一次龙卷过程观测分析[J].应用气象学报,2016,27(3):334-341.
    [16]陈双,王迎春,张文龙.北京香山“7. 29”γ中尺度短时局地大暴雨过程综合分析[J].暴雨灾害,2016,35(2):148-157.
    [17]周生辉,魏鸣,张培昌,等.多普勒雷达反演风场的风切变识别研究[J].热带气象学报,2015,31(1):119-127.
    [18]周长春,吴蓬萍,陈梁勋.成都一次脉冲风暴特征及成因分析[J].气象科技,2016,44(2):283-289.
    [19]丁小剑,唐明晖,陈德桥.两次冰雹过程多普勒天气雷达产品的对比分析[J].气象与环境科学,2010,33(2):42-47.
    [20]俞小鼎,姚秀萍,熊廷南,等.多普勒天气雷达原理与业务应用[M].北京:气象出版社,2006:102-116.
    [21]任桂林,石慕真,于震宇. 6. 27黑龙江省中南部暴雨的中尺度特征分析[J].黑龙江气象,2013,30(4):17-31.
    [22]吴红秀,杨沛琼. VIL产品在丽江强对流天气中的应用[J].云南地理环境研究,2014,26(5):74-78.
    [23]刘治国,陶健红,杨建才,等.冰雹云和雷雨云单体VIL演变特征对比分析[J].高原气象,2008,27(6):1363-1374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700