基于分段变维的沥青路表纹理磨光行为分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Polishing Behavior Analysis of Asphalt Pavement Surface Texture Based on Piecewise Variable Dimension Fractal
  • 作者:周兴林 ; 祝媛媛 ; 冉茂平 ; 肖神清 ; 黄晓明
  • 英文作者:ZHOU Xing-lin;ZHU Yuan-yuan;RAN Mao-ping;XIAO Shen-qing;HUANG Xiao-ming;School of Automotive and Traffic Engineering, Wuhan University of Science and Technology;School of Transportation Science and Engineering, Harbin Institute of Technology;School of Transportation,Southeast University;
  • 关键词:道路工程 ; 磨光行为 ; 分段变维分形 ; 路表纹理 ; 多尺度
  • 英文关键词:road engineering;;polishing behavior;;piecewise variable dimension fractal;;pavement surface texture;;multiscale
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:武汉科技大学汽车与交通工程学院;哈尔滨工业大学交通科学与工程学院;东南大学交通学院;
  • 出版日期:2019-04-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.188
  • 基金:国家自然科学基金项目(51778509,51578430,51827812);; 湖北省自然科学基金项目(2018CFB293);; 湖北省教育厅项目(B2016011)
  • 语种:中文;
  • 页:ZGGL201904017
  • 页数:10
  • CN:04
  • ISSN:61-1313/U
  • 分类号:191-199+246
摘要
为了多尺度表征沥青路表纹理磨光行为,揭示其表面纹理磨光演化机理,首先基于沥青表面纹理的自仿相似特性,引入高差自相关函数,将常维分形扩展至分段变维分形,建立了表面纹理分段变维评价模型。其次,分别选取高磨光值的玄武岩和低磨光值的石灰岩成型沥青混合料试件,对其进行岩相鉴定,借助平板磨光机进行室内加速磨光试验,测量了不同磨光状态下的动摩擦因数,同时采用三维激光扫描仪获取了表面纹理信息。最后分析了断面轮廓分段变维高差自相关特性,并与摩擦因数进行了对比分析。结果表明:路面在大尺度范围内有明显的分段变维特征,高差自相关函数可以多尺度量化沥青混合料表面微观至宏观纹理特征,2种路表宏微观纹理界限波长为0.4 mm左右;截止波长可以作为评价普通磨光和差异磨光的指标,其中水平截止波长表示路面平均微凸体尺寸,垂直截止波长表示骨料平均高度;随着磨光转数的增加,受2种磨光机制影响的试件(玄武岩)表面纹理的水平截止波长变化甚微,而受普通磨光机制作用的试件(石灰岩)表面纹理的水平与垂直截止波长均下降明显;在道路设计和施工过程中,选取矿物组成成分更多、粒径分布更广、矿物质间硬度相差较大的集料,更容易受到2种磨光机制的影响,从而有助于沥青路表保持足够的表面纹理水平,延缓路面抗滑性能衰减速率。
        An attempt was made to characterize the polishing behavior of the asphalt pavement surface texture and to reveal the evolution mechanism of the surface texture in the polishing process. First, the height difference correlation function was introduced by extending the single dimensional fractal to the piecewise variable dimension fractal based on self-affinity of the surface texture, and the piecewise variable dimension fractal evaluation model of the surface texture was established. Second, basalt and limestone, having, high and low polished stone value, were respectively selected to mold the asphalt mixture, the indoor accelerated polishing test was conducted by the plate-polishing machine, and the dynamic friction coefficient in different polishing cycles was measured. Finally, the height difference correlation characteristic of the profile was analyzed and compared with the friction coefficient. Research results indicate that asphalt pavement surface has obvious piecewise variable dimension fractal characteristics, the height difference correlation function can quantify the microtexture and macrotexture characteristics of the asphalt mixture surface, and the boundary wavelength between the microtexture and macrotexture is approximately 0.4 mm. The cut-off wavelength can be the indexes to distinguish general polishing and differential polishing. The horizontal cut-off wavelength corresponds to the largest asperity, and the vertical cut-off wavelength indicates the mean height of the aggregate. With an increase in the number of polishing cycles, the horizontal cut-off wavelength of the basalt specimen which affected by the two polishing mechanisms changed little, whereas both horizontal and vertical cut-off wavelengths decreased significantly for the limestone specimen, which was only affected by the general polishing. In the design and construction process, the aggregates that had a greater mineral composition, wider particle size distribution, and a greater difference in hardness are more easily affected by the two polishing mechanisms so as to keep enough asphalt surface texture and delay the skid resistance performance attenuation rate.
引文
[1] CHEN X H,DAI S B,GUO Y Q,et al.Polishing of Asphalt Pavements:From Macro- to Micro-scale [J].Journal of Testing and Evaluation,2015,44 (2):20150271.
    [2] KANE M,ARTAMENDI I,SCARPAS T.Long-term Skid Resistance of Asphalt Surfacings:Correlation Between Wehner-Schulze Friction Values and the Mineralogical Composition of the Aggregates [J].Wear,2013,303 (1/2):235-243.
    [3] DO M T,KANE M,TANG Z,et al.Physical Model for the Prediction of Pavement Polishing [J].Wear,2009,267 (1/2/3/4):81-85.
    [4] VILLANI M M,SCARPAS A,BONDT A D,et al.Application of Fractal Analysis for Measuring the Effects of Rubber Polishing on the Friction of Asphalt Concrete Mixtures [J].Wear,2014,320 (6):179-188.
    [5] KHASAWNEH M A.Macrotexture Characterisation of Laboratory-compacted Hot-mix Asphalt Specimens Using a New Asphalt Polishing Machine [J].Road Materials and Pavement Design,2018,19 (2):400-416.
    [6] CHEN X H,STEINAUER B,WANG D W .Evolution of Aggregate Surface Texture Due to Tyre-polishing [J].Journal of Central South University of Technology,2011,18 (1):259-265.
    [7] 曹平.表面形貌与污染物对沥青路面抗滑性能影响的研究[D].武汉:武汉理工大学,2009.CAO Ping.Study on Effects of Texture and Contaminants to Skid Resistance of Asphalt Pavement [D].Wuhan:Wuhan University of Technology,2009.
    [8] 肖鹏飞,韩森,杨朝晖.路表纹理及路面抗滑性能在交通磨光作用下的变化研究[J].中外公路,2010,30 (6):65-68.XIAO Peng-fei,HAN Sen,YANG Chao-hui.Evolution of Road Surface Texture and Pavement Skid Resistance Performance in Polishing Process [J].Journal of China & Foreign Highway,2010,30 (6):65-68.
    [9] DO M T,TANG Z,KANE M,et al.Evolution of Road-surface Skid-resistance and Texture Due to Polishing [J].Wear,2009,266 (5):574-577.
    [10] SANDBERG U.Influence of Road Surface Texture on Traffic Characteristics Related to Environment,Economy and Safety:A State-of-the-art Study Regarding Measures and Measuring Methods [R].Link?ping:Swedish National Road and Transport Research Institute,1998.
    [11] 陈德,韩森,凌诚,等.沥青混合料表面构造水平及分布特性测试方法[J].中国公路学报,2017,30(10):25-31,38.CHEN De,HAN Sen,LING Cheng,et al.Test Method of Level and Distribution of Hot Mixed Asphalt Surface Texture [J].China Journal of Highway and Transport,2017,30 (10):25-31,38.
    [12] 陈德.沥青混合料表面构造图像评价方法及抗滑降噪性能预测研究[D].西安:长安大学,2015.CHEN De.Study on Image-based Texture Analysis Method and Prediction of Skid-resistance & Tire-pavement Noise Reduction of HMA [D].Xi’an:Chang’an University,2015.
    [13] 童申家,谢祥兵,赵大勇.沥青路面纹理分布的分形描述及抗滑性能评价[J].中国公路学报,2016,29(2):1-7.TONG Shen-jia,XIE Xiang-bing,ZHAO Da-yong.Fractal Description of Texture Distribution Evaluation of Skid-resistance Performance for Asphalt Pavement [J].China Journal of Highway and Transport,2016,29 (2):1-7.
    [14] 钱振东,薛永超,张令刚.沥青路面三维纹理分形维数及其抗滑性能[J].中南大学学报:自然科学版,2016,47(10):3590-3596.QIAN Zhen-dong,XUE Yong-chao,ZHANG Ling-gang.3-D Textural Fractal Dimension and Skid Resistance of Asphalt Pavement [J].Journal of Central South University:Science and Technology,2016,47 (10):3590-3596.
    [15] 江晓霞,覃润浦,高文阳,等.超大粒径沥青混合料级配分形特性与力学指标[J].交通运输工程学报,2013,13(1):7-14.JIANG Xiao-xia,QIN Run-pu,GAO Wen-yang,et al.Gradation Fractal Characteristic and Mechanical Indexes of Super Large Stone Asphalt Mixture [J].Journal of Traffic and Transportation Engineering,2013,13 (1):7-14.
    [16] 李林萍,艾贤臣,于江,等.沥青混合料矿料级配分形特性研究[J].中外公路,2016,36(2):257-261.LI Lin-ping,AI Xian-chen,YU Jiang,et al.Study on the Gradation Fractal Characteristics of Asphalt Mixtures [J].Journal of China & Foreign Highway,2016,36 (2):257-261.
    [17] LEONARDI G.Fractal Dimension for the Characterization of Asphalt Mixture Properties [J].American Journal of Applied Sciences,2016,13 (7):877-882.
    [18] 吴浩,张久鹏,王秉纲.多孔沥青混合料空隙特征与路用性能关系[J].交通运输工程学报,2010,10(1):1-5.WU Hao,ZHANG Jiu-peng,WANG Bing-gang.Relationship Between Characteristic of Void and Road Performance of Porous Asphalt Mixture [J].Journal of Traffic and Transportation Engineering,2010,10 (1):1-5.
    [19] LOEHLE C,LI B L.Statistical Properties of Ecological and Geologic Fractals [J].Ecological Modelling,1996,85 (2/3):271-284.
    [20] 王维锋,严新平,肖旺新,等.路面纹理的多重分形特征描述与识别方法[J].交通运输工程学报,2013,13(3):15-21.WANG Wei-feng,YAN Xin-ping,XIAO Wang-xin,et al.Approach of Multifractal Feature Description and Recognition for Pavement Texture [J].Journal of Traffic and Transportation Engineering,2013,13 (3):15-21.
    [21] 周兴林,肖神清,刘万康,等.沥青路表纹理的多重分形特征及其磨光行为[J].东南大学学报:自然科学版,2018,48(1):175-180.ZHOU Xing-lin,XIAO Shen-qing,LIU Wan-kang,et al.Multifractal Characteristics and Polishing Behaviors of Surface Texture on Asphalt Pavement [J].Journal of Southeast University:Natural Science Edition,2018,48 (1):175-180.
    [22] GAL A L,KLüPPEL M.Investigation and Modelling of Rubber Stationary Friction on Rough Surfaces [J].Journal of Physics Condensed Matter,2007,20 (1):1-13.
    [23] TORBRUEGGE S,WIES B.Characterization of Pavement Texture by Means of Height Difference Correlation and Relation to Wet Skid Resistance [J].Journal of Traffic and Transportation Engineering:English Edition,2015,2 (2):59-67.
    [24] 杨发.基于胎/路耦合的沥青路面抗滑性能研究[D].南京:东南大学,2014.YANG Fa.Analysis of Asphalt Pavement Skid Resistance Based on Tire-road Coupling [D].Nanjing:Southeast University,2014.
    [25] TOURENQ C,FOURMAINTRAUX D.Road Surface Roughness and the Properties of Aggregates [J].Bulletin de Liaison des Laboratoires des Pontsetchaussées,1971,51:61-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700