丘陵地形风场水平非均匀性和导线风荷载
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:HORIZONTAL NON-UNIFORM CHARACTERISTICS OF WIND FIELDS AND WIND LOADS OF CONDUCTORS IN HILLY TERRAINS
  • 作者:卞荣 ; 张弘 ; 吴列阳 ; 俞恩科 ; 黄铭枫 ; 楼文娟 ; 胡文侃 ; 章李刚
  • 英文作者:BIAN Rong;ZHANG Hong;WU Lieyang;YU Enke;HUANG Mingfeng;LOU Wenjuan;HU Wenkan;ZHANG Ligang;Research Institute of Economic Technology,Zhejiang Provincial Corporation of State Grid;Institute of Structural Engineering,Zhejiang University;State Grid Zhoushan Power Supply Company;
  • 关键词:现场实测 ; 风场特性 ; 风压不均匀系数 ; 档距折减系数
  • 英文关键词:field measurements;;wind field characteristics;;non-uniform factor of wind pressure;;span reduction factor
  • 中文刊名:GYJZ
  • 英文刊名:Industrial Construction
  • 机构:国网浙江省电力公司经济技术研究院;浙江大学建筑工程学院;国网舟山供电公司;
  • 出版日期:2019-06-20
  • 出版单位:工业建筑
  • 年:2019
  • 期:v.49;No.557
  • 基金:国家电网科技项目(5211JY17000M)
  • 语种:中文;
  • 页:GYJZ201906020
  • 页数:8
  • CN:06
  • ISSN:11-2068/TU
  • 分类号:104-111
摘要
对于大跨度输电线而言,风场水平特性对输电塔线体系的结构设计有重要影响。我国现有GB50545—2010《110~750 k V架空送电线路设计规范》采用风压不均匀系数来衡量风速沿空间分布的不均匀性。在浙江舟山某丘陵地形长约500 m的输电线路沿线构建了一套多点同步风速监测系统,采集获得了近1年的风速风向及温度等数据。基于现场实测数据,分析丘陵地形周边的水平风场特性,定量计算不同档距条件下的平均风速不均匀系数和极值风速不均匀系数。讨论了国内外导线风荷载计算方法中风压不均匀系数和档距折减系数的取值依据,并与现场实测数据得出的经验算式进行对比分析。实测得到的极值风速不均匀系数经验式与国内外荷载计算标准档距折减系数取值基本一致,也与DL/T 5551—2018规范报批稿中给出的档距折减系数计算式相符。
        For long-span transmission lines,the characteristics of horizontal wind have an important influence on the structural design of transmission tower-line systems. Non-uniform factor of wind pressure is adopted in Chinese Code for Design of Overhead Transmission Line( GB 50545—2010) to take into account the spatial distribution of mean wind speeds along the line. A multiple-point synchronous monitoring system was set up for field measurements along a 500-meter long transmission line in hilly terrains,Zhoushan,Zhejiang. Almost one-year duration of wind records were collected. Based on field measurements,the characteristics of horizontal wind were analyzed,and the nonuniform of wind speed was evaluated in terms of non-uniform factors of mean wind speeds and gust wind speeds. The definition and basis of non-uniform factor of wind pressure and span reduction factor given in various design codes were discussed,and compared with the empirical formula of those factors derived from the field measurements. It was demonstrated that the empirical formula of span reduction factor were consistent with the specification of international codes,and agreed well with the provisions of conductor wind loads in the newly submitted version of"Load Code for the Design of Overhead Transmission Line"( DL/T 5551—2018).
引文
[1]徐小东,王钢.关于风压不均匀系数的研究[J].电力建设,2007,28(7):1-4.
    [2]HOLMES J D,BANKS R W,PAEVERE P.Measurements of Topographic Multipliers and Flow Separation from a Steep Escarpment.Part I.Full Scale Measurements[J].Journal of Wind Engineering&Industrial Aero-Dynamics,1997,69-71(3):885-892.
    [3]GLANVILLE M J,KWOK K C S.Measurements of Topographic Multipliers and Flow Separation from a Steep Escarpment.Part II.Model-Scale Measurements[J].Journal of Wind Engineering&Industrial Aero-Dynamics,1997,69-71(3):893-902.
    [4]黄铭枫,徐卿,吴承卉,等.基于实测数据的香港K11大楼台风风场模拟与风振分析[J].建筑结构学报,2016,37(12):1-9.
    [5]李正农,潘月月,桑冲,等.厦门沿海某超高层建筑结构风致振动动力特性研究[J].建筑结构学报,2013,34(6):22-29.
    [6]罗尧治,蔡朋程,孙斌,等.国家体育场大跨度屋盖结构风场实测研究[J].振动与冲击,2012,31(3):64-68.
    [7]Design Standards on Structures for Transmissions:JEC-127-1979[S].
    [8]American Society of Civil Engineers.Guidelines for Electrical Transmission Line Structural Loading[S].New York:ASCEManuals and Reports on Engineering Practice,2010.
    [9]KWON D K,KAREEM A.Revisiting Gust Averaging Time and Gust Effect Factor in ASCE 7[J].Journal of Structural Engineering,2014,140(11):1-7.
    [10]HOLMES J D,HANGAN H M,SCHROEDER J L,et al.AForensic Study of the Lubbock-Reese Downdraft of 2002[J].Wind and Structures,2008,11(2):137-152.
    [11]中华人民共和国住房和城乡建设部.100~750 kV架空输电线路设计规范:GB 50545-2010[S].北京:中国计划出版社,2010.
    [12]张宏杰,杨风利,杨靖波,等.导线风压不均匀系数的取值探讨[J].工业建筑,2016,46(8):7-11.
    [13]楼文娟,段志勇,张少锋,等.湍流尺度内风场的水平向空间相关性研究[J].建筑结构学报,2016,37(1):77-84.
    [14]邵瑰玮,闵绚,董彦武,等.输电导线悬挂点处等效风荷载仿真分析[J].高电压技术,2012,38(2):476-482.
    [15]安毅,全涌,顾明.上海陆家嘴地区近500 m高空台风“梅花”脉动风幅值特性研究[J].土木工程学报,2013(7):21-27.
    [16]吴本刚,吴玖荣,傅继阳.高层建筑实测风场环境的非平稳性分析研究[J].空气动力学学报,2014,32(3):410-415.
    [17]IEC.Wind Turbine-Part 1:Design Requirement,International Electrotechnical Commission:IEC 61400-1[S].IEC,2005.
    [18]SHU Z R,CHAN Q S P W.Gust Factors for Tropical Cyclone,Monsoon and Thunderstorm Winds[J].Journal of Wind Engineering and Industrial Aerodynamics,2015,142:1-14.
    [19]胡尚瑜,聂功恒,李秋胜,等.近海岸强风风场特性现场实测研究[J].空气动力学学报,2017,35(2):242-250.
    [20]宋丽莉,吴战平,秦鹏,等.复杂山地近地层强风特性分析[J].气象学报,2009,67(3):452-460.
    [21]HOLMES J D.Recent Developments in the Specification of Wind Loads on Transmission Lines[J].Wind and Structures,2018,5(1):8-18.
    [22]段志勇.不同地貌的风场特性及输电线路风致效应研究[D].杭州:浙江大学,2017.
    [23]楼文娟,罗罡,胡文侃.输电线路等效静力风荷载与调整系数计算方法[J].浙江大学学报(工学版),2016,50(11):2120-2127.
    [24]DIN.Overhead Electrical Lines Exceeding AC 1 kV Up to and Including AC 45 kV:DIN VDE 0210-12[S].
    [25]ARMITT J,COJAN M,MANUZIO C,et al.Calculation of Wind Loadings on Components of Overhead Lines[J].Proceedings of the Institution of Electrical Engineers,1975,122(11):1247-1252.
    [26]HOLMES J D.Wind Loading of Structures[M].3rd ed.Boca Raton:Crc Press,2015.
    [27]汪大海,吴海洋,梁枢果.输电线风荷载规范方法的理论解析和计算比较研究[J].中国电机工程学报,2014,34(36):6613-6621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700