激光同轴送粉增材制造TiAl合金的性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Properties of TiAl Alloy Prepared by Additive Manufacturing with Laser Coaxial Powder Feeding
  • 作者:刘占起 ; 徐国建 ; 马瑞鑫 ; 郑文涛 ; 胡方 ; 杭争翔
  • 英文作者:Liu Zhanqi;Xu Guojian;Ma Ruixin;Zheng Wentao;Hu Fang;Hang Zhengxiang;School of Material Science and Engineering, Shenyang University of Technology;
  • 关键词:激光技术 ; 激光增材制造 ; γ-TiAl合金 ; 工艺参数 ; 显微组织 ; 力学性能
  • 英文关键词:laser technique;;laser additive manufacturing;;γ-TiAl alloy;;process parameters;;microstructure;;mechanical properties
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:沈阳工业大学材料科学与工程学院;
  • 出版日期:2018-12-27 11:13
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:智能化增材制造系统平台(2017YFB1103000)
  • 语种:中文;
  • 页:JJZZ201903018
  • 页数:7
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:146-152
摘要
将Ti-48Al-2Cr-2Nb合金粉和铌粉进行机械混合,然后采用激光增材制造工艺成功制备出γ-TiAl合金样品,研究了激光功率、扫描速率和送粉量对沉积成形的影响规律,分析了沉积层的显微组织、相组成、断口形貌及沉积层的硬度分布。研究结果表明:随着激光功率增大,沉积层宽和层高均增大;随着扫描速率增大,沉积层宽和层高均减小;随着送粉量增大,沉积层的宽度增大,沉积层的高度基本不变;最佳工艺参数下得到的沉积试样成形良好,无冶金缺陷存在,沉积层由大量γ相和少量α_2相组成;沿沉积试样Z方向的室温压缩屈服强度为905 MPa,抗压强度为1542 MPa,压缩率14.7%,抗拉强度为425 MPa,断后伸长率为3.3%;压缩试样和拉伸试样的断口均为准解理断口。
        The alloy powders containing Ti-48 Al-2 Cr-2 Nb and niobium are mechanically mixed, and γ-TiAl alloy samples are successfully prepared with the laser additive manufacturing technique. The influence rules of laser power, scanning speed and powder feeding amount on deposition forming are studied, and the microstructure, phase composition, fracture morphology and hardness distribution of the deposited layer are analyzed. The research results indicate that the width and height of the deposited layer increase with the increase of laser power. With the increase of the scanning speed, the width and height of the deposited layer decrease. With the increase of powder feeding amount, the width of the deposited layer increases and the height of the deposited layer is basically unchanged. The deposited samples obtained under the optimum technology parameters are well formed and have no metallurgical defects. The deposited layer consists of a large number of γ phases and a small amount of α_2 phases. The compressive yield strength, compression strength and compression ratio are 905 MPa, 1542 MPa and 14.7% respectively along the Z direction of deposited specimen at room temperature. The tensile strength and elongation are 425 MPa and 3.3%, respectively. The fractures of compressive specimen and tensile specimen are both quasi-cleavage fractures.
引文
[1] Qu H P, Li P, Zhang S Q, et al. The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys[J]. Materials & Design, 2010, 31(4): 2201-2210.
    [2] Liu C T, Schneibel J H, Maziasz P J, et al. Tensile properties and fracture toughness of TiAl alloys with controlled microstructures[J]. Intermetallics, 1996, 4(6): 429-440.
    [3] Karthikeyan S, Viswanathan G B, Gouma P I, et al. Mechanisms and effect of microstructure on creep of TiAl-based alloys[J]. Materials Science and Engineering A, 2002, 329/330/331: 621-630.
    [4] Qin L Y, Xu L L, Yang G, et al. Effect of annealing method on microstructure and mechanical properties of TA15 titanium alloys by laser deposition manufacturing[J]. Chinese Journal of Lasers, 2018, 45(3): 0302004. 钦兰云, 徐丽丽, 杨光, 等. 退火方式对激光沉积TA15钛合金组织及力学性能的影响[J]. 中国激光, 2018, 45(3): 0302004.
    [5] Yang G. Solidification behavior and microstructure evolution of high Nb containing TiAl alloys[D]. Xi′an: Northwestern Polytechnical University, 2016: 4-10. 杨光. 高铌TiAl合金凝固行为及组织演化研究[D]. 西安: 西北工业大学, 2016: 4-10.
    [6] Fang L. Investigation on the thermal stabilities of microstructure in fully lamellar high Nb containing TiAl alloys[D]. Beijing: University of Science and Technology Beijing, 2017: 6-13. 方璐. 全片层高Nb-TiAl合金显微组织热稳定性研究[D]. 北京: 北京科技大学, 2017: 6-13.
    [7] Xu Z J. The microstructures and properties of TC11/γ-TiAl bi-materials fabricated by laser powders deposition process[D]. Beijing: General Research Institute for Nonferrous Metals, 2013: 5-9. 徐志军. 激光熔化沉积TC11/γ-TiAl双合金材料的工艺、组织及性能[D]. 北京: 北京有色金属研究总院, 2013: 5-9.
    [8] Shang C. Study on process and microstructure evolution of TiAl alloy fabricated by laser deposition manufacturing[D]. Shenyang: Shenyang Aerospace University, 2017: 15-25. 尚纯. 激光沉积制造TiAl合金工艺与组织演变研究[D]. 沈阳: 沈阳航空航天大学, 2017: 15-25.
    [9] Schwerdtfeger J, K?rner C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: microstructure and aluminium loss[J]. Intermetallics, 2014, 49(3): 29-35.
    [10] Qu H P, Li P, Zhang S Q, et al. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material[J]. Materials & Design, 2010, 31(1): 574-582.
    [11] Zhang X D, Brice C, Mahaffey D W, et al. Characterization of laser-deposited TiAl alloys[J]. Scripta Materialia, 2001, 44(10): 2419-2424.
    [12] Zhang S Y, Lin X, Chen J, et al. Influence of processing parameter on the microstructure and forming characterizations of Ti-6al-4V titanium alloy after laser rapid forming processing[J]. Rare Metal Materials and Engineering, 2007, 36(10): 1839-1843. 张霜银, 林鑫, 陈静, 等. 工艺参数对激光快速成形TC4钛合金组织及成形质量的影响[J]. 稀有金属材料与工程, 2007, 36(10): 1839-1843.
    [13] Zhang Y Z, Huang C, Wu F Y, et al. Microstructure and mechanical properties of laser direct deposited γ-TiAl alloy[J]. Chinese Journal of Lasers, 2010, 37(10): 2684-2688. 张永忠, 黄灿, 吴复尧, 等. 激光熔化沉积γ-TiAl合金的组织及力学性能[J]. 中国激光, 2010, 37(10): 2684-2688.
    [14] Ma Y, Cuiuri D, Hoye N, et al. The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding[J]. Materials Science and Engineering A, 2015, 631: 230-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700