含能双环HMX衍生物分子设计的密度泛函研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular design of energetic bicyclo-HMX derivatives: insights from density functional theory
  • 作者:赵国政 ; 范建敏 ; 杨东芳 ; 范荣荣 ; 陆明
  • 英文作者:ZHAO Guo-Zheng;FAN Jian-Min;YANG Dong-Fang;FAN Rong-Rong;LU Ming;Modern College of Humanities and Sciences, Shanxi Normal University;Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science,Shanxi Normal University;School of Chemical Engineering,Nanjing University of Science & Technology;
  • 关键词:密度泛函 ; 双环HMX衍生物 ; 分子设计 ; 爆轰性能
  • 英文关键词:Density functional theory;;Bicyclo-HMX derivatives;;Molecular design;;Detonation performance
  • 中文刊名:YZYF
  • 英文刊名:Journal of Atomic and Molecular Physics
  • 机构:山西师范大学现代文理学院;山西师范大学化学与材料科学学院磁性分子与磁信息材料教育部重点实验室;南京理工大学化工学院;
  • 出版日期:2019-02-15 14:13
  • 出版单位:原子与分子物理学报
  • 年:2019
  • 期:v.36
  • 基金:山西师范大学现代文理学院基础研究重点项目(2018JCYJ03)
  • 语种:英文;
  • 页:YZYF201903005
  • 页数:6
  • CN:03
  • ISSN:51-1199/O4
  • 分类号:37-42
摘要
运用DFT-B3LYP/6-311G(d,p)方法,计算了所设计的三种双环HMX(2,4,6,8-四硝基-2,4,6,8-四氮杂双环[3.3.0]辛烷)衍生物分子.基于理论晶体密度和固态生成热计算衍生物分子的爆轰性能;通过前线轨道能与特征高度(h_(50))评价衍生物分子的感度.结果表明,理论晶体密度均高于1.90 g·cm~(-3),爆速高于9.0 km·s~(-1),爆压约为40 GPa.三种双环HMX衍生物分子是潜在的高能量密度材料.
        Three new bicyclo-HMX(2,4,6,8-tetranitro-1 H,5 H-2,4,6,8-tetraaza-bicyclo[3.3.0]octane) derivatives have been designed and calculated at the density functional theory(DFT)-B3 LYP/6-311 G(d,p) level. Detonation performance was evaluated by Kamlet-Jacobs(K-J) equations based on the theoretical crystal densities and condensed-phase heats of formation. Sensitivity was evaluated using the frontier orbital energies and characteristic heights(h_(50)). The predicted theoretical crystal densities of the derivatives were above 1.90 g·cm~(-3), detonation velocities were over 9.0 km·s~(-1), and detonation pressures were about 40 GPa, showing that bicyclo-HMX derivatives may be the potential high energetic density materials(HEDMs).
引文
[1] Xu Y G,Wang Q,Shen C,et al.A series of energetic metal pentazolate hydrates [J].Nature,2017,549:78.
    [2] Zhang W Q,Zhang J H,Deng M C,et al.A promising high-energy-density material [J].Nat.Commun.,2017,8:181.
    [3] Chen D,Yang H W,Yi Z X,et al.C8N26H4:An environmentally friendly primary explosive with high heat of formation [J].Angew.Chem.Int.Ed.,2018,57:2081.
    [4] Liu Y Y,Li B,Zhao G M,et al.A theoretical prediction of the relationships between the impact sensitivity and activation energy,electrostatic potential in Trinitro-aromatic-explosives [J].J.At.Mol.Phys.,2017,34:851 (in Chinese)
    [5] Gilardi R,Flippen-Anderson J L,Evans R.Cis-2,4,6,8-tetranitro-1H,5H- 2,4,6,8-tetraaza-bicyclo[3.3.0]octane,the energetic compound 'Bicyclo-HMX' [J].Acta Crystallogr.E,2002,58:O972.
    [6] Wang F,Wang G X,Du H C,et al.Theoretical studies on the heats of formation,detonation properties,and pyrolysis mechanisms of energetic cyclic nitramines [J].J.Phys.Chem.A,2011,115 :13858.
    [7] Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 09,Revision C.01 [CP].Wallingford CT:Gaussian,Inc.,2010.
    [8] Lee C,Yang W,Parr R G.Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J].Phys.Rev.B,1988,37:785.
    [9] Becke A D.Density functional thermochemistry.III.the role of exact exchange [J].J.Chem.Phys.,1993,98:5648.
    [10] Hariharan P C,Pople J A.The influence of polarization functions on molecular orbital hydrogenation energies [J].Theor.Chim.Acta,1973,28:213.
    [11] Wei T,Zhu W H,Zhang J,et al.DFT study on energetic tetrazolo-[1,5-b]-1,2,4,5- tetrazine and 1,2,4-triazolo-[4,3-b]-1,2,4,5-tetrazine derivatives [J].J.Hazard Mater.,2010,179:581.
    [12] Guo X J,Li B,Ren F D,et al.A theoretical prediction of the relationships between the impact sensitivity and electrostatic potential in nitrocyclobutane explosive with the C-NO2 groups and its derivatives [J].J.At.Mol.Phys.,2016,33:773 (in Chinese)
    [13] Politzer P,Martinez J,Murray J S,et al.An electrostatic interaction correction for improved crystal density prediction [J].Mol.Phys.,2009,107:2095.
    [14] Lide D R.CRC handbook of chemistry and physics [M].Florida:CRC Press,2002.
    [15] Atkins P W.Physical chemistry[M].2nd ed.Oxford:Oxford University Press,1982.
    [16] Politzer P,Murray J S,Grice M E,et al.Calculation of heats of sublimation and solid phase heats of formation [J].Mol.Phys.,1997,91:923.
    [17] Xiao H M,Zhu W H,Xiao J J,et al.Separation and incorporation of microcosmic theoretical investigation for high energetic materials [J].Chin.J.Energ.Mater.,2015,23:1038 (in Chinese)
    [18] Jaidann M,Roy S,Abou-Rachid H,et al.A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives [J].J.Hazard Mater.,2010,176:165.
    [19] Hill T L.Introduction to Statistic Thermodynamics [M].New York:Addison-Wesley,1960.
    [20] Kamlet M J,Jacobs S J.A simple method for calculating detonation properties of C [single bond] H [single bond] N [single bond] O explosives [J].J.Chem.Phys.,1968,48:23.
    [21] Pospí?il M,Vávra P,Concha M C,et al.A possible crystal volume factor in the impact sensitivities of some energetic compounds [J].J.Mol.Model.,2010,16:895.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700