太阳能制冷与热管制冷的多年冻土地基热稳定维护效果对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison between Effects of Solar Refrigeration and Heat Pipe Refrigeration on Thermal Stability Maintenance in Permafrost Foundation
  • 作者:米维军 ; 赵永虎 ; 杨晓明 ; 屈耀辉 ; 武小鹏
  • 英文作者:MI Weijun;ZHAO Yonghu;YANG Xiaoming;QU Yaohui;WU Xiaopeng;Northwest Research Institute Co.,Ltd.of C.R.E.C;Key Laboratory of Permafrost and Environment Engineering in Qinghai Province;
  • 关键词:多年冻土 ; 冻土地基 ; 热稳定性 ; 太阳能制冷 ; 热管制冷 ; 制冷影响半径 ; 制冷量
  • 英文关键词:Permafrost;;Permafrost foundation;;Thermal stability;;Solar refrigeration;;Heat pipe refrigeration;;Influence radius of refrigeration;;Refrigerating capacity
  • 中文刊名:ZGTK
  • 英文刊名:China Railway Science
  • 机构:中铁西北科学研究院有限公司;青海省冻土与环境工程重点实验室;
  • 出版日期:2017-11-15
  • 出版单位:中国铁道科学
  • 年:2017
  • 期:v.38;No.157
  • 基金:中国中铁股份有限公司科技开发计划项目(2013-重大-25)
  • 语种:中文;
  • 页:ZGTK201706001
  • 页数:8
  • CN:06
  • ISSN:11-2480/U
  • 分类号:3-10
摘要
在青藏高原风火山多年冻土试验场,对太阳能制冷装置与热管制冷装置用于维护多年冻土地基热稳定的效果进行现场对比试验。结果表明:在同等试验条件下,太阳能制冷装置显现出了较强的工作性能和制冷效果;太阳能制冷装置能够以多年冻土区丰富的太阳光照为热源动力,使制冷装置不分季节全时段工作,特别是在暖季,能够有效阻止环境温度对多年冻土地基的热侵蚀;太阳能制冷装置的年均地温降低幅度比热管制冷装置的大0.57~0.96℃,制冷影响半径比热管制冷装置的大0.13~0.87m,实际制冷量为热管制冷装置制冷量的1.97倍。
        At the permafrost test field on Fenghuoshan of Qinghai-Tibetan Plateau,comparative experiments were conducted to study the effects of solar refrigeration device and heat pipe refrigeration device on maintaining the thermal stability of permafrost foundation.Results show that under the same experimental conditions,solar refrigeration device has stronger working and refrigeration performances.With the rich sunlight in permafrost region as heat source power,the solar refrigeration device can work full time in all seasons.Especially in warm season,it can effectively prevent permafrost foundation from the thermal erosion of ambient temperature.The reduction in the annual mean ground temperature of solar refrigeration device is 0.57~0.96 ℃ greater than that of heat pipe refrigeration device,its cooling influence radius is0.13~0.87 mlarger,and its actual refrigerating capacity is 1.97 times as much as that of heat pipe refrigeration device.
引文
[1]米维军,李勇,石刚强,等.青藏铁路多年冻土桥梁桩基稳定性探讨[J].铁道工程学报,2010,27(9):15-19.(MI Weijun,LI Yong,SHI Gangqiang,et al.Study on Stability of Bridge Pile Foundation in Permafrost Area along Qinghai-Tibet Railway[J].Journal of Railway Engineering Society,2010,27(9):15-19.in Chinese)
    [2]王小军,米维军,武小鹏,等.青藏铁路多年冻土区路堤人为上限的主要影响因素分析研究[J].岩土工程学报,2010,32(8):1221-1227.(WANG Xiaojun,MI Weijun,WU Xiaopeng,et al.Main Factors Influencing Artificial Upper Table for Embankment of Qinghai-Tibet Railway in Permafrost Region[J].Chinese Journal of Geotechnical Engineering,2010,32(8):1221-1227.in Chinese)
    [3]米维军,王小军,武小鹏.关于青藏铁路热棒路基稳定性的探讨[J].路基工程,2010(2):129-131.(MI Weijun,WANG Xiaojun,WU Xiaopeng.Exploration on Stability of Heat Pipe Subgrade of Qinghai-Tibet Railway[J].Subgrade Engineering,2010(2):129-131.in Chinese)
    [4]冀六祥.关于青海唐古拉山地区风火山群的定义问题[J].中国区域地质,1994,13(4):374-380.(JI Liuxiang.On the Problem of the Definition of the Fenghuoshan Group in the Tanggula Mountains Area,Qinghai[J].Regional Geology of China,1994,13(4):374-380.in Chinese)
    [5]李永强,韩龙武,崔珑,等.热棒在青藏高原风火山地区的实测效果分析[J].岩石力学与工程学报,2003,22(增2):2669-2672.(LI Yongqiang,HAN Longwu,CUI Long,et al.Analysis of the Actual Measurement Result of Thermal Probes in Fenghuoshan Area on Qinghai-Tibet Plateau[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(Supplement 2):2669-2672.in Chinese)
    [6]黄以职,米发荣.青藏高原风火山地区的多年冻土厚度及其与地质构造的关系[J].冰川冻土,1983,5(1):55-62.(HUANG Yizhi,MI Farong.Thickness of Permafrost in Fenghuoshan,Qinghai-Tibet Plateau and Its Relation to the Geology Structure[J].Journal of Glaciology and Geocryology,1983,5(1):55-62.in Chinese)
    [7]杨安杰,周德明.高原多年冻土区隧道湿喷混凝土施工技术[J].中国铁道科学,2004,25(1):142-145.(YANG Anjie,ZHOU Deming.Tunnel Wet Concrete-Shot Technology in Permafrost Region[J].China Railway Science,2004,25(1):142-145.in Chinese)
    [8]米维军,贾燕.确定热棒制冷影响范围的新方法[J].路基工程,2007(1):20-23.(MI Weijun,JIA Yan.A new Method to Determine the Refrigeration Influence Range of the Hot Rod[J].Subgrade Engineering,2007(1):20-23.in Chinese)
    [9]徐兵魁,熊治文.青藏高原多年冻土区热棒路基设计计算[J].中国铁道科学,2006,27(5):17-22.(XU Bingkui,XIONG Zhiwen.Design Calculation of Heat Pipe Subgrade in Permafrost Regions of Qinghai Tibet Plateau[J].China Railway Science,2006,27(5):17-22.in Chinese)
    [10]中华人民共和国住房和城乡建设部.JGJ 118—2011冻土地区建筑地基基础设计规范[S].北京:中国建筑工业出版社,2011.(Ministry of Housing and Urban-Rural Development of the Peoples Republic of China.JGJ 118-2011Building Foundation Design Standard in Permafrost Regions[S].Beijing:China Building Industry Press,2011.in Chinese)
    [11]中华人民共和国住房和城乡建设部.GB 50324—2014冻土工程地质勘察规范[S].北京:中国计划出版社,2015.(Ministry of Housing and Urban-Rural Development of the Peoples Republic of China.GB 50324-2014Engineering Geological Survey Standard in Permafrost Regions[S].Beijing:China Planning Press,2015.in Chinese)
    [12]刘世伟,张建明.高温冻土物理力学特性研究现状[J].冰川冻土,2012,34(1):120-129.(LIU Shiwei,ZHANG Jianming.Review on Physic-Mechanical Properties of Warm Frozen Soil[J].Journal of Glaciology and Geocryology,2012,34(1):120-129.in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700