沙尘暴对北京市空气细菌多样性特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of sandstorms on the diversity characteristics of airborne bacteria in Beijing
  • 作者:甄泉 ; 王雅晴 ; 冼超凡 ; 郭卫俊 ; 欧阳志云
  • 英文作者:ZHEN Quan;WANG Yaqing;XIAN Chaofan;GUO Weijun;OUYANG Zhiyun;State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of Chinese Academy of Sciences;School of Public Health,Bengbu Medical College;School of Environmental Science and Engineering,Zhejiang Gongshang University;
  • 关键词:沙尘暴 ; 高通量测序 ; 空气细菌 ; 群落多样性
  • 英文关键词:sandstorm;;high-throughput sequencing;;airborne bacteria;;community diversity
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:中国科学院生态环境研究中心城市与区域生态国家重点实验室;中国科学院大学;蚌埠医学院公共卫生学院;浙江工商大学环境科学与工程学院;
  • 出版日期:2018-10-18 14:58
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金重点项目(71533005);; 浙江省自然科学基金项目(LY17D050006)
  • 语种:中文;
  • 页:STXB201902033
  • 页数:9
  • CN:02
  • ISSN:11-2031/Q
  • 分类号:322-330
摘要
亚洲沙尘暴携带着各类污染物质,严重影响下风向地区大气过程及生态系统和相关人群的健康。然而,沙尘天气对中国华北地区空气细菌群落及多样性特征影响的研究较少。以北京市为例,系统研究了沙尘暴对城市空气细菌多样性特征的影响。2015年4月,通过定点采样连续收集了一次沙尘暴及其前后4天的空气颗粒物样本,DNA提取、PCR扩增后进行16S rRNA基因高通量测序。共获得169122条高质量序列,生物信息学分析表明,北京市空气细菌物种多样性较高,沙尘暴不能引起细菌OTU数目的增加,但沙尘暴天气下细菌群落Pielou、Shannon和Simpson指数显著增加。菌群分类分析发现,北京市空气细菌由35个细菌门构成,其中变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)相对丰度最高,分别占总序列的32.76%、28.09%、25.46%和6.32%;芽单胞菌门(Gemmatimonadetes)和酸杆菌门(Acidobacteria)次之,分别占序列总数的2.11%和1.81%,其他细菌门的相对丰度均低于1%。沙尘暴天气下,变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、芽单胞菌门(Gemmatimonadetes)和酸杆菌门(Acidobacteria)显著升高(P<0.05),分别由31.67%、5.74%、1.82%、1.51%升高至41.46%、10.98%、4.48%和4.26%;而放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)显著降低(P <0.05),分别由28.84%、27.10%降低至22.13%和12.35%。冷杆菌属(Psychrobacter),纤维单胞菌属(Cellulomonas),不动杆菌属(Acinetobacter),假单胞菌属(Pseudomonas)和梭菌属(Clostridium)可能含有人类条件病原菌,其在沙尘暴天气中相对丰度下降,但绝对丰度会大幅增加。沙尘暴能降低人体免疫力,因此致病菌潜在健康风险可能显著增强。通过聚类分析和主成分分析发现,沙尘暴日与非沙尘暴日空气细菌群落差异较大,而沙尘暴前后群落结构差异较小。沙尘暴前后空气细菌群落α-多样性和β多样性均无显著差异,推测沙尘暴只能暂时影响空气细菌群落特征,不能显著改变其群落结构。本研究通过分析了沙尘暴侵袭下北京市空气细菌群落多样性特征及动态,为制定中国北方城市沙尘暴灾害预警措施和建立气传疾病的防控机制提供数据支持。
        Asian dust events usually transport various pollutants that considerably impact atmospheric processes,biologicalecosystems,and human health in downwind areas. To date,the composition and biodiversity dynamics of airborne bacteria have rarely been investigated in urban regions during Asian sandstorms,especially in northern China. Taking Beijing as an example,this study systematically evaluated the effects of sandstorms on the diversity characteristics of airborne bacteria.Air samples were collected from the roof of buildings for nine consecutive days(April 11— 19,2015), covering a sandstorm day(April 15,2015),as well as four days prior to and after it. After extracting DNA and performing PCR amplifying and 16 S rRNA gene high-throughput sequencing,a total of 169,122 high-quality sequences were obtained.Bioinformatics analysis on these mass data showed a high richness of airborne bacteria in this city. Sandstorms could not result in increased OTU numbers, but could result in increased Pielou, Shannon, and Simpson indexes. Bacterial communities in the Beijing atmosphere consisted of 35 phyla. Among them,Proteobacteria,Actinobacteria,Firmicutes,and Bacteroidetes were the dominant phyla,which accounted for 32.76%,28.09%,25.46% and 6.32% of the total sequences,respectively; Gemmatimonadetes(2.11%) and Acidobacteria(1. 81%) followed; whereas the relative abundance of the other 29 phyla were < 1%. During the sandstorm, the relative abundance of Proteobacteria, Bacteroidetes,Gemmatimonadetes,and Acidobacteria significantly increased from 31.67%,5.74%,1.82%,1.51% to 41.46%,10.98%,4.48%,and 4.26%,respectively; whereas Actinobacteria and Firmicutes remarkably decreased from 28.84%,27.10% to22.13% and 12.35%,respectively. The genera Psychrobacter,Cellulomonas,Acinetobacter,Pseudomonas,and Clostridium may be opportunistic pathogenic bacteria that potentially threaten human health. During the sandstorm, the relative abundance of these genera decreased,but their absolute abundance increased considerably. Sandstorms potentially weaken human immune capabilities,and hence the potential risks caused by these pathogenic bacteria to human health would increase during sandstorms. Hierarchical cluster and principal component analyses on bacterial communities indicated large differences between the samples from sandstorm and non-sandstorm weather conditions,whereas differences between the samples collected before and after the sandstorm were not obvious. No significant differences were detected in α and βdiversity in the comparisons of the air bacterial community collected before and after the sandstorm(t test and Adonis test,P > 0.05). Thus,sandstorms could only temporarily affect the characteristics of airborne bacterial communities,but not permanently change them. Together,this study analyzed the diverse characteristics and dynamics of airborne bacterial communities in Beijing under sandstorm conditions,and the results could provide data support for environmental disaster warnings,as well as the prevention and control of airborne diseases in northern China.
引文
[1] Yuan H L,Zhang D Z,Shi Y N,Li B Z,Yang J S,Yu X J,Chen N,Kakikawa M. Cell concentration,viability and culture composition of airborne bacteria during a dust event in Beijing. Journal of Environmental Sciences,2017,55:33-40.
    [2] Christner B C,Cai R M,Morris C E,McCarter K S,Foreman C M,Skidmore M L,Montross S N,Sands D C. Geographic,seasonal,and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proceedings of the National Academy of Sciences of the United States of America,2008,105(48):18854-18859.
    [3] Bowers R M,Lauber C L,Wiedinmyer C,Hamady M,Hallar A G,Fall R,Knight R,Fierer N. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Applied and Environmental Microbiology,2009,75(15):5121-5130.
    [4] Polymenakou P N. Atmosphere:a source of pathogenic or beneficial microbes? Atmosphere,2012,3(4):87-102.
    [5] Liu H,Zhang X,Zhang H,Yao X W,Zhou M,Wang J Q,He Z F,Zhang H H,Lou L P,Mao W H,Zheng P,Hu B L. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental Pollution,2018,233:483-493.
    [6] Zhen Q,Deng Y,Wang Y Q,Wang X K,Zhang H X,Sun X,Ouyang Z Y. Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment,2017,601-602:703-712.
    [7] Goudie A S. Desert dust and human health disorders. Environment International,2014,63:101-113.
    [8]韩晨,祁建华,谢绵测,张文倩,李先国,张大海.青岛近海春季沙尘天空气可培养真菌及其潜在健康风险.城市环境与城市生态,2015,28(4):18-23.
    [9] Griffin D W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews,2007,20(3):459-477.
    [10] Puspitasari F,Maki T,Shi G Y,Bin C,Kobayashi F,Hasegawa H,Iwasaka Y. Phylogenetic analysis of bacterial species compositions in sand dunes and dust aerosol in an Asian dust source area,the Taklimakan Desert. Air Quality,Atmosphere&Health,2015,9(6):631-644.
    [11] Cha S,Srinivasan S,Jang J H,Lee D,Lim S,Kim K S,Jheong W,Lee D W,Park E R,Chung H M,Choe J,Kim M K,Seo T. Metagenomic analysis of airborne bacterial community and diversity in Seoul, Korea, during December 2014, Asian dust event. PLoS One, 2017, 12(1):e0170693.
    [12] Cha S,Lee D,Jang J H,Lim S,Yang D,Seo T. Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in South Korea. Scientific Reports,2016,6:37271.
    [13] Jeon E M,Kim H J,Jung K,Kim J H,Kim M Y,Kim Y P,Ka J O. Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmospheric Environment,2011,45(25):4313-4321.
    [14] Hara K,Zhang D Z. Bacterial abundance and viability in long-range transported dust. Atmospheric Environment,2012,47:20-25.
    [15] Lee S,Choi B,Yi S M,Ko G. Characterization of microbial community during Asian dust events in Korea. Science of the Total Environment,2009,407(20):5308-5314.
    [16] Maki T,Puspitasari F,Hara K,Yamada M,Kobayashi F,Hasegawa H,Iwasaka Y. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust(Kosa)event. Science of the Total Environment,2014,488-489:75-84.
    [17] Yamaguchi N,Ichijo T,Sakotani A,Baba T,Nasu M. Global dispersion of bacterial cells on Asian dust. Scientific Reports,2012,2:525.
    [18] Park J,Li P F,Ichijo T,Nasu M,Yamaguchi N. Effects of Asian dust events on atmospheric bacterial communities at different distances downwind of the source region. Journal of Environmental Sciences,2018,doi:10.1016/j.jes.2017.12.019.(in press)
    [19] Maki T,Kurosaki Y,Onishi K,Lee K C,Pointing S B,Jugder D,Yamanaka N,Hasegawa H,Shinoda M. Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi desert area during dust events. Air Quality,Atmosphere&Health,2017,10(3):249-260.
    [20] Kakikawa M,Kobayashi F,Maki T,Yamada M,Higashi T,Chen B,Shi G Y,Hong C S,Tobo Y,Iwasaka Y. Dustborne microorganisms in the atmosphere over an Asian dust source region,Dunhuang. Air Quality,Atmosphere&Health,2008,1(4):195-202.
    [21] An S,Sin H H,DuBow M S. Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea.Heredity,2015,114(5):460-467.
    [22] Park J,Ichijo T,Nasu M,Yamaguchi N. Investigation of bacterial effects of Asian dust events through comparison with seasonal variability in outdoor airborne bacterial community. Scientific Reports,2016,6:35706.
    [23] Yamaguchi N,Baba T,Ichijo T,Himezawa Y,Enoki K,Saraya M,Li P F,Nasu M. Abundance and community structure of bacteria on Asian dust particles collected in Beijing,China,during the Asian dust season. Biological&Pharmaceutical Bulletin,2016,39(1):68-77.
    [24] Wang Y,Zhuang G S,Tang A H,Zhang W J,Sun Y L,Wang Z F,An Z S. The evolution of chemical components of aerosols at five monitoring sites of China during dust storms. Atmospheric Environment,2007,41(5):1091-1106.
    [25] MagocˇT,Salzberg S L. FLASH:Fast length adjustment of short reads to improve genome assemblies. Bioinformatics,2011,27(21):2957-2963.
    [26] Caporaso J G,Kuczynski J,Stombaugh J,Bittinger K,Bushman F D,Costello E K,Fierer N,Pe1a A G,Goodrich J K,Gordon J I,Huttley G A,Kelley S T,Knights D,Koenig J E,Ley R E,Lozupone C A,McDonald D,Muegge B D,Pirrung M,Reeder J,Sevinsky J R,Turnbaugh P J,Walters W A,Widmann J,Yatsunenko T,Zaneveld J,Knight R. QIIME allows analysis of high-throughput community sequencing data. Nature Methods,2010,7(5):335-336.
    [27] Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads. Nature Methods,2013,10(10):996-998.
    [28] Schloss P D,Westcott S L,Ryabin T,Hall J R,Hartmann M,Hollister E B,Lesniewski R A,Oakley B B,Parks D H,Robinson C J,Sahl J W,Stres B,Thallinger G G,Van Horn D J,Weber C F. Introducing mothur:Open-source,platform-independent,community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology,2009,75(23):7537-7541.
    [29] Rognes T,Flouri T,Nichols B,Quince C,MahéF. VSEARCH:A versatile open source tool for metagenomics. PeerJ,2016,4:e2584.
    [30] Smets W,Moretti S,Denys S,Lebeer S. Airborne bacteria in the atmosphere:Presence,purpose,and potential. Atmospheric Environment,2016,139:214-221.
    [31]赖芬芬,孙军. 2015年3月大气环流和天气分析.气象,2015,41(6):786-792.
    [32] Mazar Y,Cytryn E,Erel Y,Rudich Y. Effect of dust storms on the atmospheric microbiome in the Eastern Mediterranean. Environmental Science&Technology,2016,50(8):4194-4202.
    [33] Maki T,Hara K,Iwata A,Lee K C,Kawai K,Kai K,Kobayashi F,Pointing S B,Archer S,Hasegawa H,Iwasaka Y. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula(Japan)in response to Asian dust events. Atmospheric Chemistry and Physics,2017,17(19):11877-11897.
    [34]王丹丹,林青,欧提库尔·玛合木提,杨红梅,娄恺.塔克拉玛干沙尘暴源区空气细菌群落多样性.微生物学报,2018,doi:10.13343/j.cnki.wsxb.20170458.(in press)
    [35] Yamaguchi N,Park J,Kodama M,Ichijo T,Baba T,Nasu M. Changes in the airborne bacterial community in outdoor environments following asian dust events. Microbes and Environments,2014,29(1):82-88.
    [36] An S,Couteau C,Luo F,Neveu J,DuBow M S. Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts. Microbial Ecology,2013,66(4):850-860.
    [37] Katra I,Arotsker L,Krasnov H,Zaritsky A,Kushmaro A,Ben-Dov E. Richness and diversity in dust stormborne biomes at the southeast mediterranean. Scientific Reports,2014,4:5265.
    [38] Du P R,Du R,Ren W S,Lu Z D,Fu P Q. Seasonal variation characteristic of inhalable microbial communities in PM2.5in Beijing city,China.Science of the total environment,2018,610-611:308-315.
    [39] Du P R,Du R,Ren W S,Lu Z D,Zhang Y,Fu P Q. Variations of bacteria and fungi in PM2.5in Beijing,China. Atmospheric Environment,2018,172:55-64.
    [40] Polymenakou P N,Mandalakis M,Stephanou E G,Tselepides A. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environmental Health Perspectives,2007,116(3):292-296.
    [41] An H L,Zhang L,Tang Y L,Luo X S,Sun T J,Li Y W,Wang Y,Dai J,Fang C X. Skermanella xinjiangensis sp. nov.,isolated from the desert of Xinjiang,China. International Journal of Systematic and Evolutionary Microbiology,2009,59(Pt 6):1531-1534.
    [42] María O A J,Miguel S C J,Fabiola G A,Elizabeth G D,Araceli R C,Patricia A P,Claudia W A,Maribel G V,Gloria L,Jeanette G C A,Alberto D Q J,Alfonso M T,Ernesto R G J. Fatal Psychrobacter sp. infection in a pediatric patient with meningitis identified by metagenomic nextgeneration sequencing in cerebrospinal fluid. Archives of Microbiology,2016,198(2):129-135.
    [43] Ohtaki H,Ohkusu K,Sawamura H,Ohta H,Inoue R,Iwasa J,Ito H,Murakami N,Ezaki T,Moriwaki H,Seishima M. First report of acute cholecystitis with sepsis caused by Cellulomonas denverensis. Journal of Clinical Microbiology,2009,47(10):3391-3393.
    [44] Visca P,Seifert H,Towner K J. Acinetobacter infection-an emerging threat to human health. IUBMB Life,2011,63(12):1048-1054.
    [45] Morrison Jr A J,Wenzel R P. Epidemiology of infections due to Pseudomonas aeruginosa. Reviews of Infectious Diseases,1984,6(S3):S627-S642.
    [46] Centers for Disease Control and Prevention(CDC). Severe Clostridium difficile-associated disease in populations previously at low risk-four states,2005. MMWR. Morbidity and Mortality Weekly Report,2005,54(47):1201-1205.
    [47] Cao C,Jiang W J,Wang B Y,Fang J H,Lang J D,Tian G,Jiang J K,Zhu T F. Inhalable microorganisms in Beijing's PM2.5and PM10pollutants during a severe smog event. Environmental Science&Technology,2014,48(3):1499-1507.
    [48] Gao J F,Fan X Y,Li H Y,Pan K L. Airborne bacterial communities of PM2.5in Beijing-Tianjin-Hebei megalopolis,China as revealed by illumina MiSeq sequencing:a case study. Aerosol and Air Quality Research,2017,17(3):788-798.
    [49] Woo A C,Brar M S,Chan Y,Lau M C Y,Leung F C C,Scott J A,Vrijmoed L L P,Zawar-Reza P,Pointing S B. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmospheric Environment,2013,74:291-300.
    [50]李明远,徐志凯.医学微生物学(第三版).北京:人民卫生出版社,2015:176-211.
    [51] Honda A,Matsuda Y,Murayama R,Tsuji K,Nishikawa M,Koike E,Yoshida S,Ichinose T,Takano H. Effects of Asian sand dust particles on the respiratory and immune system. Journal of Applied Toxicology,2014,34(3):250-257.
    [52]周康辉,方翀. 2015年4月大气环流和天气分析.气象,2015,41(7):915-920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700