贡湖生态修复区水质净化模拟与净化能力
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of water purification and estimation of purifying capacity in Gonghu ecological restoration area
  • 作者:施芊芸 ; 钱新 ; 高海龙 ; 李慧明
  • 英文作者:SHI Qian-yun;QIAN Xin;GAO Hai-long;LI Hui-ming;State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University;
  • 关键词:三维水质模型 ; 沉水植物模拟 ; 营养盐 ; 净化能力
  • 英文关键词:3D water quality model;;submerged macrophyte simulation;;nutrient;;purifying capacity
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:南京大学环境学院污染控制与资源化研究国家重点实验室;
  • 出版日期:2018-05-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家水体污染控制与治理科技重大专项(2013ZX07101014)
  • 语种:中文;
  • 页:ZGHJ201805039
  • 页数:8
  • CN:05
  • ISSN:11-2201/X
  • 分类号:280-287
摘要
利用三维水质模型,对藻类生长以及沉水植物(穗花狐尾藻、菹草、苦草)的生长和分布进行模拟,探讨春、夏不同季节情况下,贡湖生态修复区对流域内流入的氮、磷污染负荷的净化效果,旨在进一步定量地揭示沉水植物对富营养化水体净化的重要作用.结果表明贡湖生态修复区夏季(7~9月)出水口IV类水水质达标率略优于春季(3~5月),主要体现在春季氮、磷污染负荷流入,刺激藻类生长,叶绿素a浓度较高;夏季沉水植物生长旺盛,能够与藻类竞争营养盐,从而抑制藻类生长.考虑氮磷污染物流入湖体的后续效应,180d内春季贡湖生态修复区总氮、总磷平均稀释净化效率分别为74.76%和71.00%,180d内夏季贡湖生态修复区总氮、总磷平均稀释净化效率分别为73.20%和64.65%.修复区最大净化能力估算结果为加强生态修复区的管理,保障清水还湖水质提供了参考依据.
        Using 3 D water quality model, we simulated the growth of algae and the growth and the distribution of submerged macrophytes(Myriophyllum spicatum L., Potamogeton crispus, Vallisneria natans) and compared the effect of water purification of nutrients in Gonghu ecological restoration area in spring and summer, aiming at further quantitatively revealing the important role of submerged macrophytes in the purification of eutrophic water bodies. The results showed that: The class IV water attainment rate of the ecological area discharge in summer(July~September) is higher than that in spring(March-May). In spring, the algae grow fast with the nitrogen and phosphorus nutrients inflowing, which can result in a higher concentration of chlorophyll a. However, a large amount of submerged macrophytes can complete with algae for nutrients, thereby inhibiting algal growth. Considering the follow-up effect of nutrients inflowing, the average dilution and purification efficiency of total nitrogen and total phosphorus in Gonghu ecological restoration area were 74.76% and 71.00% respectively in 180 days when the nutrients inflowed in spring, and 73.20% and 64.65 % when the nutrients inflowed in summer. The estimation results of the maximum purifying capacity can provide a reference for strengthening the management of ecological restoration area and ensuring the water quality of the lake.
引文
[1]齐凌艳,黄佳聪,高俊峰,等.基于二维湖泊藻类模型的洪泽湖藻类空间动态模拟[J].中国环境科学,2015,35(10):3090-3100.
    [2]王雁,黄佳聪,闫人华,等.湖泊湿地的水质净化效应——以太湖三山湿地为例[J].湖泊科学,2016,28(1):124-131.
    [3]Backer S D,Teissier S,Triest L.Stabilizing the clear-water state in eutrophic ponds after biomanipulation:submerged vegetation versus fish recolonization[J].Hydrobiologia,2012,689(1):161-176.
    [4]Jeppesen E,Jensen J P,S?ndergaard M,et al.Top-down control in freshwater lakes:the role of nutrient state,submerged macrophytes and water depth[J].Hydrobiologia,1997,342-343(1):151-164.
    [5]Schulz M,Kozerski H P,Pluntke T,et al.The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree(Germany)[J].Water Research,2003,37(3):569.
    [6]孟繁丽,何连生,李一葳,等.白洋淀草型与藻型水域溶解氧含量的差异性[J].湿地科学,2013,11(2):292-296.
    [7]Muylaert K,Pcbrez-Martcnez C,Sclnchez-Castillo P,et al.Influence of nutrients,submerged macrophytes and zooplankton grazing on phytoplankton biomass and diversity along a latitudinal gradient in Europe[J].Hydrobiologia,2010,653(1):79-90.
    [8]Ji Z G.Hydrodynamics and water quality:modeling rivers,lakes,and estuaries[M].Wiley-Interscience,2013.
    [9]Strand J A,Weisner S E B.Morphological plastic responses to water depth and wave exposure in an aquatic plant(Myriophyllum spicatum)[J].Journal of Ecology,2001,89(2):166-175.
    [10]Xu W,Hu W,Deng J,et al.Impacts of water depth and substrate type on Vallisneria natans at wave-exposed and sheltered sites in a eutrophic large lake[J].Ecological Engineering,2016,97:344-354.
    [11]秦伯强,张运林,高光,等.湖泊生态恢复的关键因子分析[J].地理科学进展,2014,33(7):918-924.
    [12]Asaeda T,Bon T V.Modelling the effects of macrophytes on algal blooming in eutrophic shallow lakes[J].Ecological Modelling,1997,104(2/3):261-287.
    [13]Xu F L,J?rgensen S E,Tao S,et al.Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake(Lake Chao)[J].Ecological Modelling,1999,117(2/3):239-260.
    [14]Xu F L,J?rgensen S E,Kong X Z,et al.Chapter 13-Development of Ecological Models for the Effects of Macrophyte Restoration on the Ecosystem Health of a Large Eutrophic Chinese Lake(Lake Chaohu)[M].Developments in Environmental Modelling,2014:337-373.
    [15]韩涛,翟淑华,胡维平,等.太湖氮、磷自净能力的实验与模型模拟[J].环境科学,2013,34(10):3862-3871.
    [16]Zhang C,Gao X,Wang L,et al.Modelling the role of epiphyton and water level for submerged macrophyte development with a modified submerged aquatic vegetation model in a shallow reservoir in China[J].Ecological Engineering,2015,81:123-132.
    [17]GHZB1-1999地表水环境质量标准[S].
    [18]GB3838-2002地表水环境质量标准[S].
    [19]代亮亮,郭亮亮,吴中奎,等.不同浓度藻类水华对两种沉水植物的影响[J].中国环境科学,2016,36(9):2765-2773.
    [20]Li C H,Wang B,Ye C,et al.The release of nitrogen and phosphorus during the decomposition process of submerged macrophyte(Hydrilla verticillata Royle)with different biomass levels[J].Ecological Engineering,2014,70:268-274.
    [21]Li X,Cui B,Yang Q,et al.Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake,North China[J].Ecological Modelling,2013,252(1):121-128.
    [22]叶春,王博,李春华,等.沉水植物黑藻腐解过程中营养盐释放过程[J].中国环境科学,2014,(10):2653-2659.
    [23]杨小红,张邦喜,薛飞,等.3种沉水植物夏秋季对水质的净化效果[J].贵州农业科学,2011,39(10):206-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700