不同凝固剂诱导大豆蛋白冷凝胶的流变特性及分形结构分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fractal Structure and Rheological Properties Analysis of Cold-Set Soy Protein Gel Induced by Different Coagulants
  • 作者:倪俊杰 ; 傅玉颖 ; 李可馨 ; 沈亚丽 ; 王美
  • 英文作者:Ni Junjie;Fu Yuying;Li Kexin;Shen Yali;Wang Mei;College of Food Science and Biotechnology,Zhejiang Gongshang University;Hangzhou College of Commerce,Zhejiang Gongshang University;
  • 关键词:流变 ; 大豆蛋白凝胶 ; 凝固剂 ; 分形维数 ; 标度模型 ; 微结构
  • 英文关键词:rheology;;soybean protein gel;;coagulant;;fractal dimension;;scale model;;microstructure
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:浙江工商大学食品与生物工程学院;浙江工商大学杭州商学院;
  • 出版日期:2018-08-02 11:39
  • 出版单位:中国食品学报
  • 年:2018
  • 期:v.18
  • 语种:中文;
  • 页:ZGSP201807036
  • 页数:11
  • CN:07
  • ISSN:11-4528/TS
  • 分类号:300-310
摘要
研究不同质量分数凝固剂(GDL,Mg SO4,Ca Cl2,1%~4%)诱导所得大豆蛋白冷凝胶的流变特性和标度行为。结果表明:添加凝固剂后,随时间的延长,所有样品呈明显的凝胶行为,冷凝胶的凝胶强度具有浓度依赖性,随凝固剂质量分数增加而增加;频率扫描曲线对幂率模型的拟合度非常高(R2>0.938),特征值n′和n″值表明冷凝胶为弱凝胶体系;酸诱导冷凝胶热稳定性高,盐诱导凝胶经加热后结构破坏严重;盐诱导凝胶蠕变-恢复率高,盐桥作用明显;不同流变分形模型显示酸盐诱导冷凝胶形成不同的微观结构,由Shih模型可知,GDL诱导凝胶Df值在2.73~2.76之间,Mg SO4诱导凝胶在2.57~2.59之间,Ca Cl2诱导凝胶在2.5~2.69之间,Wu&Morbidelli模型所得值相应较小。凝胶的动态储能模量和分形结构显著受到凝固剂种类和不同质量分数的影响。
        The rheological properties and scaling behavior of cold-set soy protein gels induced by different coagulants(GDL, Mg SO4, Ca Cl2, 1%-4%, W/W) has been studied. The results show that: After adding coagulant, all the samples show obvious gelling behavior with the passage of time. The strength of cold gel increased with the increasing of coagulant concentration. Frequency curve of cold-set gel can be highly fit power-law model(R2>0.938). Characteristic value n′ and n″ indicates that cold-set gel system is weak gel system. Compared to salt-induced gel, acid-induced gel is higher thermal stability. After heating, the structure of cold-set gel destructed seriously. The creep-recovery rate of salt-induced gel is higher than acid-induced gel. Salt bridges played a decisive role. According to the fractal model,acid-induced gel and salt-induced gel have different microstructures. According to fractal dimension calculated by the Shih model, the Dfvalue of GDL-induced gel is 2.73-2.76, Mg SO4-induced gel is 2.57-2.59, Ca Cl2-induced gel is2.5-2.69. The fractal dimension calculated by Wu & Morbidelli model is smaller than Shih model. The dynamic storage modulus and gel fractal structure are significantly affected by the type and concentration of the coagulant.
引文
[1]廖望.温敏性微凝胶形成水凝胶的动力学,分形结构和性能改进[D].天津:南开大学,2013.
    [2]HAGIWARA T,KUMAGAI H,NAKAMURA K.Fractal analysis of aggregates formed by heating dilute BSA solutions using light scattering methods[J].Bioscience Biotechnology&Biochemistry,1996,60(11):1757-1763.
    [3]HAGIWARA T,MATSUNAGA T,NAKAMURA K K H.Analysis of aggregate structure in food protein gels with the concept of fractal[J].Bioscience Biotechnology&Biochemistry,1997,61(10):1663-1667.
    [4]HUA W,JIANJUN X,MARCO L,et al.Scattering structure factor of colloidal gels characterized by static light scattering,small-angle light scattering,and small-angle neutron scattering measurements[J].Langmuir the Acs Journal of Surfaces&Colloids,2005,21(8):3291-3295
    [5]SHIH W H,SHIH W Y,KIM S I,et al.Scaling behavior of the elastic properties of colloidal gels[J].Physical Review A,1990,42(8):4772-4779.
    [6]HU WU,MORBIDELLI M.A model relating structure of colloidal gels to their elastic properties[J].Langmuir,2001,17(4):1030-1036.
    [7]ZKAN N,XIN H,CHEN X D.Application of a depth sensing indentation hardness test to evaluate the mechanical properties of food materials[J].Journal of Food Science,2006,67(5):1814-1820.
    [8]SHI A,WANG L,LI D,et al.Suspensions of vacuum-freeze dried starch nanoparticles:Influence of Na Cl on their rheological properties[J].Carbohydrate Polymers,2013,94(2):782-790.
    [9]CLARK A H,ROSS-MURPHY S B.Structural and mechanical properties of biopolymer gels[M].Berlin Heidelberg:Biopolymers Springer,1987:57-192.
    [10]TANG C H,WU H,CHEN Z,et al.Formation and properties of glycinin-rich andβ-conglycinin-rich soy protein isolate gels induced by microbial transglutaminase[J].Food Research International,2006,39(1):87-97.
    [11]刘志胜,辰巳英三.豆腐盐类凝固剂的凝固特性与作用机理的研究[J].中国粮油学报,2000,15(3):39-42.
    [12]NICOLE M,ZHANG C E,ERIC K,et al.Salt and acid-induced soft tofu-type gels:rheology,structure and fractal analysis of viscoelastic properties as a function of coagulant concentration[J].International Journal of Food Engineering,2014,10(4):595-611.
    [13]TUNICK M H.Small-strain dynamic rheology of food protein networks[J].Journal of Agricultural&Food Chemistry,2011,59(5):1481-1486.
    [14]CHANG Y,LI D,WANG L,et al.Effect of gums on the rheological characteristics and microstructure of acid-induced SPI-gum mixed gels[J].Carbohydrate Polymers,2014,108(12):183-191.
    [15]BI C H,LI D,WANG L J,et al.Viscoelastic properties and fractal analysis of acid-induced SPI gels at different ionic strength[J].Carbohydrate Polymers,2013,92(1):98-105.
    [16]AHMED J,RAMASWAMY H S.Dynamic rheology and thermal transitions in meat-based strained baby foods[J].Journal of Food Engineering,2007,78(4):1274-1284.
    [17]WU M,LI D,WANG L J,et al.Rheological properties of extruded dispersions of flaxseed-maize blend[J].Journal of Food Engineering,2010,98(4):480-491.
    [18]HAGIWARA T,KUMAGAI H,MATSUNAGA T,et al.Analysis of aggregate structure in food protein gels with the concept of fractal[J].Bioscience Biotechnology and Biochemistry,1997,61(10):1663-1667.
    [19]ECHEVERRIA C,LPEZ D,MIJANGOS C.UCST responsive microgels of poly(acrylamide-acrylic acid)copolymers:Structure and viscoelastic properties[J].Macromolecules,2009,42(22):9118-9123.
    [20]WYSS H M,DELIORMANLI A M,TERVOORT E,et al.Influence of microstructure on the rheological behavior of dense particle gels[J].AICh E Journal,2005,51(1):134-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700