高温混合气体临界击穿场强的计算研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Calculation of Critical Breakdown Field Strength of High Temperature Gas Mixtures
  • 作者:李世欣
  • 英文作者:LI Shixin;Nuclear and Radiation Safety Center,MEP;
  • 关键词:临界击穿场强 ; 零维模型 ; 玻尔兹曼方程 ; 电子能量分布函数
  • 英文关键词:critical breakdown field strength;;zero-dimensional model;;Boltzmann equation;;electron energy distribution function(EEDF)
  • 中文刊名:GYDQ
  • 英文刊名:High Voltage Apparatus
  • 机构:环境保护部核与辐射安全中心;
  • 出版日期:2018-08-16
  • 出版单位:高压电器
  • 年:2018
  • 期:v.54;No.353
  • 语种:中文;
  • 页:GYDQ201808014
  • 页数:7
  • CN:08
  • ISSN:61-1127/TM
  • 分类号:97-103
摘要
针对高温混合气体临界击穿场强的计算问题,首先对所采用的零维模型进行了介绍,在此基础之上,对纯空气、空气与PA6蒸气的混合气体、空气与POM蒸气的混合气体在内的不同组分气体介质的临界击穿场强进行了计算,并对计算结果进行了理论上的分析。所涉及到的内容主要包括高温体粒子组分的获取,玻尔兹曼方程的近似求解和电子能量分布函数(EEDF)的计算,碰撞截面数据的选择,电子碰撞电离系数和吸附系数的计算。其中重点在于对波尔兹曼输运方程的近似求解和分析不同气体介质对临界击穿场强的影响。
        Aiming at the calculation of the critical breakdown field strength of high-temperature gas mixtures,the zero-dimensional model adopted in this paper is introduced at first. Based on the zero-dimensional model,the critical breakdown field strength of gas mixtures with different components,including the pure gas,the mixture of air & PA6 vapor and the air & POM vapor are calculated. The results are analyzed theoretically. The main contents include the acquisition of particle composition under high temperature,the approximate solution of Boltzmann equation,the calculation of electron energy distribution function(EEDF),the selection of collision cross section data and the calculation of ionization coefficient and adsorption coefficient. The emphasis is on the approximate solution of the Boltzmann transport equation and the analysis of the effect of different gas media on the critical breakdown field strength.
引文
[1]KLINE L E,DAVIES D K,CHEN C L,et al.Dielectric properties for SF6 and SF6 mixtures predicted from basic data[J].Journal of Applied Physics,1979,50(11):6789-6796.
    [2]YAN J D,FANG M T,LIU Q S.Dielectric breakdown of a residual SF6 plasma at 3 000 K under diatomic equilibrium[J].IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(1):114-119.
    [3]CLITEUR G J,HAYASHI Y,HAGINOMORI E,et al.Calculation of the uniform breakdown field strength of SF6 gas[J].IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(6):843-849.
    [4]YOUSFI M,ROBIN-JOUAN P,KANZARI Z.Breakdown electric field calculations of hot SF6 for high voltage circuit breaker applications[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(6):1192-1200.
    [5]ROBIN-JOUAN P,YOUSFI M.New breakdown electric field calculation for SF6 high voltage circuit breaker applications[J].Plasma Science&Technology,2007,9(6):690-694.
    [6]TANAKA Y.Prediction of dielectric properties of N2/O2 mixtures in the temperature range of 300~3 500 K[J].Journal of Physics D:Applied Physics,2004,37(6):851-859.
    [7]TANAKA Y.Influence of copper vapor contamination on dielectric properties of hot air at 300~3 500 K in atmospheric pressure[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(3):504-512.
    [8]YAN J D,FANG M T,LIU Q S.Dielectric breakdown of a residual SF6 plasma at 3 000 K under diatomic equilibrium[J].IEEE Transactions on Dielectrics and Electrical Insulation,1997,4(1):114-119.
    [9]CLITEUR G J,HAYASHI Y,HAGINOMORI E,et al.Calculation of the uniform breakdown field strength of SF6 gas[J].IEEE Transactions on Dielectrics and Electrical Insulation,1998,5(6):843-849.
    [10]YOUSFI M,ROBIN-JOUAN P,KANZARI Z.Breakdown electric field calculations of hot SF6 for high voltage circuit breaker applications[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(6):1192-1200.
    [11]ROBIN-JOUAN P,YOUSFI M.New breakdown electric field calculation for SF6 high voltage circuit breaker applications[J].Plasma Science and Technology,2007,9(6):690.
    [12]WANG W Z,MURPHY A B,RONG M Z,et al.Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications[J].Journal of Applied Physics,2013,114(10):3301.
    [13]WANG W Z,TU X,MEI D H,et al.Dielectric breakdown properties of hot SF6/He mixtures predicted from basic data[J].Physics of Plasmas,2013,20(11):3503.
    [14]ZHAO H,LI X W,JIA S L,et al.Dielectric breakdown properties of SF6~N2 mixtures at 0.01~1.6 MPa and 300~3 000K[J].Journalof Applied Physics,2013,113(14):143301.
    [15]ZHONG L L,YANG A J,WANG X H,et al.Dielectric breakdown properties of hot SF6~CO2 mixtures at temperatures of300~3 500 K and pressures of 0.01~1.00 MPa[J].Physics of Plasmas,2014,21(5):3506.
    [16]WANG X H,ZHONG L L,YAN J,et al.Investigation of dielectric properties of cold C3F8 mixtures and hot C3F8 gas as substitutes for SF6[J].the European Physical Journal D,2015,69(10):1-7.
    [17]LI X W,ZHAO H,WU J,et al.Analysis of the insulation characteristics of CF3I mixtures with CF4,CO2,N2,O2 and air[J].Journal of Physics D:Applied Physics,2013,46(34):5203.
    [18]LI X W,ZHAO H,JIA S L,et al.Prediction of the dielectric strength for C-C4F8 mixtures with CF4,CO2,N2,O2 and air by Boltzmann equation analysis[J].Journal of Physics D:Applied Physics,2014,47(42):5204.
    [19]ZHAO H,LI X W,JIA S L,et al.Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with 50%O2 and 50%H2 from Boltzmann analysis for gas temperatures up to 3 500 K at atmospheric pressure[J].Journal of Physics D:Applied Physics,2014,47(32):5203.
    [20]TANAKA Y.Prediction of dielectric properties of N2/O2 mixtures in the temperature range of 300~3 500 K[J].Journal of Physics D:Applied Physics,2004,37(6):851.
    [21]TANAKA Y.Influence of copper vapor contamination on dielectric properties of hot air at 300~3 500 K in atmospheric pressure[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(3):504-512.
    [22]SUN H,RONG M Z,WU Y,et al.Investigation on critical breakdown electric field of hot carbon dioxide for gas circuit breaker applications[J].Journal of Physics D:Applied Physics,2015,48(5):5201.
    [23]RONG M Z,SUN H,YANG F,et al.Influence of O2 on the dielectric properties of CO2 at the elevated temperatures[J].Physics of Plasmas,2014,21(11):2117.
    [24]SUN H,WU X,RONG M Z,et al.Investigation on the dielectric properties of CO2 and CO2-based gases based on the boltzmann equation analysis[J].Plasma Science and Technology,2016(3):217-222.
    [25]PITCHFORDLC.GECplasmadataexchangeproject[J].Journal of Physics D:Applied Physics,2013,46(33):0301.
    [26]PANCHESHNYI S,BIAGI S,BORDAGE M C,et al.Electron scattering cross sections and swarm parameters for low temperature plasma modeling[J].Chemical Physics,2012,398(1):148-153.
    [27]ZHANG H T,LI D W,LUO B,et al.Influence of the gassing materials on the dielectric properties of air[J].Plasma Science and Technology,2017,19(5):68-73.
    [28]FOLKARD M A,HAYDON S C.Experimental investigations of ionization growth in nitrogen[J].Journal of Physics B:Atomic and Molecular Physics,1973,6(1):214.
    [29]DANIEL T N,HARRIS F M.The spatial growth of ionization currents in nitrogen at voltages up to 500 kV[J].Journal of Physics B:Atomic and Molecular Physics,1970,3(3):363.
    [30]LAKSHMINARASIMHA C S,LUCAS J.The ratio of radial diffusion coefficient to mobility for electrons in helium,argon,air,methane and nitric oxide[J].Journal of Physics D:Applied Physics,1977,10(3):313.
    [31]ROTHARDT L,MASTOVSKY J,JAHN G,et al.Breakdown experiments in air and nitrogen above 1 500 K[J].Journal of Physics D:Applied Physics,1981,14(4):715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700