金属表面局部腐蚀与腐蚀产物沉淀动态过程数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Study on the Dynamic Process of Partial Corrosion and Depositions on Metal Surface
  • 作者:崔静 ; 杨帆 ; 杨霆浩 ; 杨广峰
  • 英文作者:CUI Jing;YANG Fan;YANG Ting-hao;YANG Guang-feng;Airport College,Civil Aviation University;
  • 关键词:格子Boltzmann方法 ; 金属点蚀 ; 电化学反应 ; 产物沉淀 ; 结点体积法
  • 英文关键词:lattice Boltzmann method;;metal pitting corrosion;;electrochemical reaction;;product precipitation;;volume of pixel
  • 中文刊名:CLBH
  • 英文刊名:Materials Protection
  • 机构:中国民航大学机场学院;
  • 出版日期:2019-02-15
  • 出版单位:材料保护
  • 年:2019
  • 期:v.52;No.481
  • 基金:国家自然科学基金(U1633111,51206179);; 中央高校基本科研业务费(3122017036,3122017040)资助
  • 语种:中文;
  • 页:CLBH201902014
  • 页数:9
  • CN:02
  • ISSN:42-1215/TB
  • 分类号:65-72+100
摘要
数值模拟可在一定程度上弥补传统检测方法的不足,针对现有格子Boltzmann腐蚀模型不足对其进行改进,所得模型可以描述包含多相多组分流动与传输、电化学反应、金属的溶解腐蚀以及腐蚀产物沉淀的腐蚀全过程。应用此模型,针对浸没于液体腐蚀环境的金属表面单坑点蚀情况进行了数值研究,获得了金属表面腐蚀坑的形貌变化与腐蚀坑内腐蚀产物沉淀的析出情况;分析了腐蚀反应速率、腐蚀溶液扩散系数对腐蚀程度以及腐蚀产物沉淀量的影响;分析了腐蚀产物饱和浓度、腐蚀产物扩散系数和沉淀反应速率对腐蚀产物沉淀的影响。数值模拟结果表明:对于金属表面的单坑点蚀过程,腐蚀程度随腐蚀反应速率的增大而增大,随反应物组分扩散系数的增大而增大;腐蚀产物沉淀的析出量随腐蚀产物的饱和浓度的增大而减小,随腐蚀产物扩散系数的增大而减小,随沉淀反应速率的增大而增大。
        Numerical simulation could make up the shortage of traditional detection method. The existing lattice Boltzmann corrosion models were improved to overcome the shortages. The obtained model could be described as the total corrosion process including multiphase multicomponent flow and transport,electrochemical reaction,dissolution of metal corrosion and corrosion products precipitation. Through this model,the pit corrosion of metal surface immersed in liquid corrosion environment was investigated numerically,and the morphology change of corrosion pit on metal surface and the precipitation behaviors of corrosion products in corrosion pits were obtained. In addition,the influences of corrosion reactive rate and corrosion solution diffusion coefficient on corrosion degree and the amount of corrosion products were analyzed. Meanwhile,the influences of the saturation solubility of corrosion products,the diffusion coefficient of corrosion products and the precipitation reaction rate on the amounts of corrosion product precipitation were further investigated. Numerical results showed that during the pit-corrosion process of metal surface,the corrosion degree increased with the increase of corrosion reactive rate and the diffusion coefficient of reactant component. The amount of corrosion product precipitation decreased with the increase of the saturation concentration of the corrosion products and the diffusion coefficient of the corrosion products,and increased with the increase of the precipitation reactive rate.
引文
[1] LIU M,MOSTAGHIMI P. High-resolution pore-scale simulation of dissolution in porous media[J]. Chemical Engineering Science,2017,161:360-369.
    [2] NOGUES J P,FITTS J P,CELIA M A,et al. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks[J].Water Resources Research,2013,49(9):6 006-6 021.
    [3] HUBER C,SHAFEI B,PARMIGIANI A. A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation[J]. Geochimica Et Cosmochimica Acta,2014,124(1):109-130.
    [4] CHEN L,KANG Q,ROBINSON B A,et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems[J]. Physical Review E Statistical Nonlinear&Soft Matter Physics,2013,87(4):043306.
    [5] MU Y T,CHEN L,HE Y L,et al. Pore-scale modelling of dynamic interaction between SVOCs and airborne particles with lattice Boltzmann method[J]. Building&Environment,2016,104:152-161.
    [6] PEDERSEN J,JETTESTUEN E,MADLAND M V,et al. A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods[J]. Advances in Water Resources,2015,87:68-79.
    [7] CHEN L,KANG Q,HE Y L,et al. Mesoscopic study of the effects of gel concentration and materials on the formation of precipitation patterns.[J]. Langmuir the Acs Journal of Surfaces&Colloids,2012,28(32):11 745-11 754.
    [8] CHEN L,LUAN H B,HE Y L,et al. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields[J].International Journal of Thermal Sciences,2012,51(4):132-144.
    [9] ATIA A,MOHAMMEDI K. Lattice Boltzmann investigation of thermal effect on convective mixing at the edge of solvent chamber in CO2-VAPEX process[J]. World Journal of Engineering,2015,12(4):353-362.
    [10] CHEN L,KANG Q,MU Y,et al. A critical review of the pseudopotential multiphase lattice Boltzmann model:Methods and applications[J]. International Journal of Heat&Mass Transfer,2014,76(6):210-236.
    [11] CHEN L,KANG Q,TANG Q,et al. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat&Mass Transfer,2015,85:935-949.
    [12] MIN T,GAO Y,CHEN L,et al. Mesoscale investigation of reaction-diffusion and structure evolution during Fe-Al inhibition layer formation in hot-dip galvanizing[J]. International Journal of Heat&Mass Transfer,2016,92:370-380.
    [13] KANG Q,LICHTNER P C,ZHANG D. An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale[J]. Water Resources Research,2007,43(12):2 578-2 584.
    [14] MIN T,GAO Y,CHEN L,et al. Changes in porosity,permeability and surface area during rock dissolution:Effects of mineralogical heterogeneity[J]. International Journal of Heat&Mass Transfer,2016,103:900-913.
    [15] KANG Q,LICHTNER P C,ZHANG D. Lattice Boltzmann pore‐scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research Solid Earth,2006,111(B5):1-9.
    [16] LIU M,MOSTAGHIMI P. High-resolution pore-scale simulation of dissolution in porous media[J]. Chemical Engineering Science,2017,161:360-369.
    [17]崔静,杨帆,杨霆浩,等.基于格子Boltzmann方法对金属表面局部腐蚀特性数值研究[J].材料保护,2018,51(10):40-46.
    [18]唐文文,康秀英.格子Boltzmann方法模拟多孔介质内流体的流动[J].北京师范大学学报(自然科学版),2016,52(1):12-16.
    [19]翟旭军,赵凯.格子Boltzmann守恒型非平衡态的外推边界[J].计算物理,2012,29(3):347-353.
    [20]聂德明,林建忠.格子Boltzmann方法中的边界条件[J].计算物理,2004,21(1):21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700