一种联翼式水下滑翔机外形优化设计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A shape optimization design method of the joined-wing underwater glider
  • 作者:李天博 ; 王鹏 ; 孙斌 ; 黎程山
  • 英文作者:LI Tianbo;WANG Peng;SUN Bin;LI Chengshan;College of Marine Engineering,Northwestern Polytechnical University;Science and Technology on Underwater Acoustic Antagonizing Laboratory( CSSC);
  • 关键词:联翼布局 ; 水下滑翔机 ; 参数化建模 ; 代理模型 ; 外形优化设计
  • 英文关键词:joined-wing layout;;underwater glider;;parametric modeling;;surrogate model;;shape optimization design
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:西北工业大学航海学院;水声对抗技术重点实验室(中国船舶工业系统工程研究院);
  • 出版日期:2019-04-04 09:12
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:水声对抗技术重点实验室基金(SSDKKFJJ-2017-0202)
  • 语种:中文;
  • 页:HEBX201904005
  • 页数:7
  • CN:04
  • ISSN:23-1235/T
  • 分类号:32-38
摘要
为增大传统水下滑翔机的升阻比,提高水下滑翔机的运动性能,将航空领域先进的联翼布局与传统水下滑翔机相结合,提出了一种新型的联翼式水下滑翔机,并通过外形优化设计使得联翼式水下滑翔机具有更优的升阻特性.首先,对水下滑翔机主体进行数值仿真模拟,将得到的结果与试验数据进行对比,验证了数值模拟方法的有效性.其次,运用CFD仿真软件比较分析了正交错、负交错和联尾翼3种联翼布局外形的升阻特性,选择升阻比最大的正交错布局作为水下滑翔机的初始外形.然后采用描形参数化方法,建立了联翼式水下滑翔机外形的参数化模型.最后,以最大化升阻比为优化目标,构建Kriging代理模型并采用EGO算法对联翼式水下滑翔机外形进行了优化设计.研究结果表明:优化后的联翼式水下滑翔机外形相比于初始外形,升阻比提高了18.42%;相较于传统水下滑翔机,升阻比提高了23.45%,从而验证了联翼式水下滑翔机具有更优异的升阻特性.本文的研究成果为提高水下滑翔机的滑翔性能提供了一种新思路和途径.
        To improve the lift drag ratio and motion performance of underwater gliders, combining the advanced layout of the joined-wing in aviation and the traditional underwater glider, a joined-wing underwater glider configuration is proposed, which can achieve better lift drag characteristics through optimization. First, numerical simulation of the underwater glider body was carried out, and the validity of the numerical simulation method was verified by comparing the obtained results with the experimental data. Then according to the Computational Fluid Dynamics(CFD) code, the lift drag characteristics of three layouts, the positive staggered, the negative staggered, and the combined empennage were compared and analyzed. The orthogonal layout was chosen as the basic shape of the underwater glider because of its maximum lift drag ratio. Parametric modeling of the shape of the underwater glider was thus carried out. Finally, taking the maximum lift drag ratio as the optimization objective, the Kriging surrogate model was constructed and the EGO algorithm was used to optimize the shape of the joined-wing underwater glider. Results show that the lift drag ratio of the optimized underwater glider increased by 18.42% over that of the vehicle before optimization, and 23.45% over that of the traditional underwater glider. It proved that the new type joined-wing layout has excellent lift drag characteristics in the underwater glider. The research results provide a new way of improving the gliding performance of underwater gliders.
引文
[1]WOOD S, ALLEN T, KUHN S, et al. The development of an autonomous underwater powered glider for deep-sea biological, chemical and physical oceanography[C]//Oceans. Aberdeen, UK: IEEE, 2007. DOI:10.1109/OCEANSE.2007.4302217
    [2]李志伟, 崔维成. 水下滑翔机水动力外形研究综述[J]. 船舶力学, 2012, 16(7): 829LI Zhiwei, CUI Weicheng. Overview on the hydrodynamic performance of underwater gliders[J]. Journal of Ship Mechanics, 2012, 16(7): 829. DOI:10.3969/j.issn.1007-7294.2012.07.014
    [3]程雪梅. 水下滑翔机研究进展及关键技术[J]. 鱼雷技术, 2009, 17(6): 1CHENG Xuemei. Development and key technologies of autonomous underwater glider[J]. Torpedo Technology, 2009, 17(6): 1
    [4]曾庆礼, 张宇文, 赵加鹏. 水下滑翔机总体设计与运动分析[J]. 计算机仿真, 2010, 27(1): 1ZENG Qingli, ZHANG Yuwen, ZHAO Jiapeng. Design and hydrodynamic analysis of underwater glider[J]. Computer Simulation, 2010, 27(1): 1
    [5]BHATTA P, LEONARD N E. A lyapunov function for vehicles with lift and drag: stability of gliding[C]//Proceedings of the 43rd Conference on Decision and Control(CDC). Nassau, Bahamas: IEEE, 2004: 4101. DOI:10.1109/CDC.2004.1429394
    [6]SUN Chunya, SONG Baowei, WANG Peng, et al. Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target[J]. International Journal of Naval Architecture & Ocean Engineering, 2017, 9(6): 693. DOI:10.1109/j.ijnaoe.016.12.003
    [7]WOLKOVITCH J. The joined wing-an overview[J]. Journal of Aircraft, 1986, 23(3): 161. DOI:10. 2514/3.45285
    [8]LAMBERT L A, COOPER J E, NANGIA R K. Buckling alleviation for joined-wing aircraft[C]//Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA: AIAA, 2016, 53(3): 811. DOI:10.2514/6.2015-1187
    [9]郑诚行. 连翼布局飞机及探测无人机研究进展[J]. 飞行力学, 2006, 24(4): 1ZHENG Chengxing, Research and development on joined wing aircraft and sensorcraft[J]. Flight Dynamics, 2006, 24(4): 1
    [10]JONES D R. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455. DOI:10.1023/A:1008306431147
    [11]WEBB D C, SIMONETTI P J, JONES C P. Slocum: an underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447. DOI:10.1109/48.972077
    [12]宋保维, 温在顶, 曹永辉. 水下滑翔机外形设计与运动仿真[J]. 计算机仿真, 2011, 28(11): 157SONG Baowei, WEN Zaiding, CAO Yonghui. Research on movement simulation of underwater gliders[J]. Computer Simulation, 2011, 28(11): 157
    [13]景思睿, 张鸣远. 流体力学[M]. 西安: 西安交通大学出版社, 2001JING Sirui, ZHANG Mingyuan. Hydromechanics[M]. Xi'an: Xi'an Jiaotong University Press, 2001
    [14]HUANG T T, COX D B. Interaction afterbody boundary layer and propeller[C]//Proceedings of the Symposium on Hydrodynamics of the Ship and Offshore Propulsion Systems. H?vik Outside, Oslo:[s.l.], 1977: 2
    [15]谷海涛, 林扬, 胡志强, 等. 基于代理模型的水下滑翔机机翼设计优化方法[J]. 机械工程学报, 2009, 45(12): 7GU Haitao, LIN Yang, HU Zhiqiang, et al. Surrogate models based optimization methods for the design of underwater glider wing[J]. Journal of Mechanical Engineering, 2009, 45(12): 7. DOI:10.3901/JME.2009.12.007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700