油页岩含油率近红外光谱原位分析方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analyzing and Modeling Methods of Near Infrared Spectroscopy for In-situ Prediction of Oil Yield from Oil Shale
  • 作者:刘杰 ; 张福东 ; 滕飞 ; 李军 ; 王智宏
  • 英文作者:LIU Jie;ZHANG Fu-dong;TENG Fei;LI Jun;WANG Zhi-hong;Instrument Science & Electrical Engineering College,Jilin University;
  • 关键词:近红外光谱 ; 油页岩 ; 含油率 ; 原位分 ; 数据形式 ; 建模方法 ; 数据优化
  • 英文关键词:NIR spectrum;;Oil shale;;Oil yield;;In-situ analysis;;Data format;;Modeling;;Data optimization
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:吉林大学仪器科学与电气工程学院;
  • 出版日期:2014-10-15
  • 出版单位:光谱学与光谱分析
  • 年:2014
  • 期:v.34
  • 基金:吉林省科技发展计划项目(20116014);; 国家潜在油气资源(油页岩勘探开发利用)项目;; 产学研用合作创新项目(OSR-02-04)资助
  • 语种:中文;
  • 页:GUAN201410039
  • 页数:6
  • CN:10
  • ISSN:11-2200/O4
  • 分类号:195-200
摘要
为实现油页岩含油率的原位检测,采用便携式近红外光谱分析技术,针对吉林扶余油页岩基地2号钻井的66个岩芯样品开展了原位检测的分析建模方法研究。采用自制便携式近红外光谱仪器获得反射率、吸光度、K-M函数三种数据形式光谱数据,结合主成分-马氏距离(PCA-MD)剔除异常样品、无信息变量消除法(UVE)波长筛选及二者组合的四种建模数据优化方法,采用相同的数据预处理方法进行偏最小二乘(PLS)和反向传播神经网络(BPANN)两种方法的建模分析研究,确定最佳分析模型及方法。结果表明(1)不论是否采用四种不同的数据优化方法,两种建模方法所用建模数据库适合采用反射率或K-M函数的光谱数据形式;(2)两种建模方法,采用四种不同的数据优化方法,对相同数据库建模精度的影响不同:采用PLS建模方法、以PCA-MD和UVE+PCA-MD两种方法进行数据优化、可以提高K-M函数光谱数据形式数据库的建模分析精度,采用BPANN建模方法、以UVE、PCA-MD与UVE组合的三种方法进行数据优化、对三种数据形式数据库的建模精度均有所提高;(3)除以反射率光谱数据并进行PCA-MD数据优化外,采用BPANN方法的建模精度好于PLS法。其中采用反射率光谱数据形式、只进行UVE数据优化外的BPANN建模精度最高,预测相关系数为0.92、标准偏差为0.69%。
        In order to in-situ detect the oil yield of oil shale,based on portable near infrared spectroscopy analytical technology,with 66 rock core samples from No.2well drilling of Fuyu oil shale base in Jilin,the modeling and analyzing methods for in-situ detection were researched.By the developed portable spectrometer,3data formats(reflectance,absorbance and K-M function)spectra were acquired.With 4different modeling data optimization methods:principal component-mahalanobis distance(PCAMD)for eliminating abnormal samples,uninformative variables elimination(UVE)for wavelength selection and their combinations:PCA-MD+UVE and UVE+PCA-MD,2modeling methods:partial least square(PLS)and back propagation artificial neural network(BPANN),and the same data pre-processing,the modeling and analyzing experiment were performed to determine the optimum analysis model and method.The results show that the data format,modeling data optimization method and modeling method all affect the analysis precision of model.Results show that whether or not using the optimization method,reflectance or K-M function is the proper spectrum format of the modeling database for two modeling methods.Using two different modeling methods and four different data optimization methods,the model precisions of the same modeling database are different.For PLS modeling method,the PCA-MD and UVE+PCA-MD data optimization methods can improve the modeling precision of database using K-M function spectrum data format.For BPANN modeling method,UVE,UVE+PCA-MD and PCAMD+UVE data optimization methods can improve the modeling precision of database using any of the 3spectrum data formats.In addition to using the reflectance spectra and PCA-MD data optimization method,modeling precision by BPANN method is better than that by PLS method.And modeling with reflectance spectra,UVE optimization method and BPANN modeling method,the model gets the highest analysis precision,its correlation coefficient(RP)is 0.92,and its standard error of prediction(SEP)is 0.69%.
引文
[1]QIAN Jia-lin,YIN Liang(钱家麟,尹亮).Oilshale——The Alternative Energy for Petroleum(油页岩——石油的补充能源).Beijing:China Petrochemical Press(北京:中国石化出版社),2008,1,69.
    [2]The Mensuration of Oil Yield form Oilshale-Low Temperature Carbonization(油页岩含油率测定法(低温干馏法)),SH/T 0508—92.
    [3]Passey Q R.AAPG Bulletin,1990,74(12):1777.
    [4]HE Jun-ling,DENG Shou-wei,CHEN Wen-long,et al(贺君玲,邓守伟,陈文龙,等).Journal of Jilin University-Geoscience Edition(吉林大学学报·地球科学版),2006,36(6):909.
    [5]Snyder R W,Painter P C,Conauer D C.Fuel.,1983,62:1205.
    [6]Alstadt K N,Katti D R,Katti K S.Spectrochimica Acta Part A,2012,89:105.
    [7]XIE Fang-fang,WANG Ze,SONG Wen-li,et al(谢芳芳,王泽,宋文立,等).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2011,31(1):914.
    [8]Romeo M J,Adams M J,Hind A R,et al.Journal of Near Infrared Spectroscopy,2002,10(3):223.
    [9]LU Wan-zhen(陆婉珍).The Modern Analysis Technique of Near-Infrared Spectrum.2nd ed.(现代近红外光谱分析技术,第2版).Beijing:China Petrochemical Press(北京:中国石化出版社),2006,1,30,306.
    [10]CHU Xiao-li(褚小立).Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications(化学计量学方法与分子光谱分析技术).Beijing:Chemical Industry Press(北京:化学工业出版社),2011.47,61,75,80,89,259.
    [11]HAN Liang-liang,MAO Pei-sheng,WANG Xin-guo,et al(韩亮亮,毛培胜,王新国,等).J.Infrared Millim.Waves(红外与毫米波学报),2009,28(6):423.
    [12]WU Di,WU Hong-xi,CAI Jing-bo,et al(吴迪,吴洪喜,蔡景波,等).J.Infrared Millim.Waves(红外与毫米波学报),2009,28(6):423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700