微通道内温度梯度作用下高分子悬浮液流动的eDPD模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy-conserving Dissipative Particle Dynamics Simulation of Macromolecular Solutions Flow in Micro-Channel under Temperature Gradient
  • 作者:刘汉涛 ; 刘宇翔
  • 英文作者:LIU Han-tao;LIU Yu-xiang;The Laboratory of Energy&Environment Engineering and Computational Fluid Dynamics,North University of China;
  • 关键词:能量守恒耗散粒子动力学(eDPD) ; 高分子 ; 微流动 ; 温度梯度 ; FENE模型
  • 英文关键词:Energy-conserving dissipative particle dynamics(eDPD);;Macromolecule;;Microflow;;Temperature gradient;;Finite-extensive nonlinear elastic(FENE) model
  • 中文刊名:GFZT
  • 英文刊名:Polymer Bulletin
  • 机构:中北大学能源动力工程学院;
  • 出版日期:2019-04-15
  • 出版单位:高分子通报
  • 年:2019
  • 期:No.240
  • 基金:国家自然科学基金(51476150);; 山西省留学科技资助项目(2017-088);; 中北大学杰出青年基金
  • 语种:中文;
  • 页:GFZT201904008
  • 页数:9
  • CN:04
  • ISSN:11-2051/O6
  • 分类号:59-67
摘要
有传热影响的高分子迁移广泛存在于生物和医学工程中,探索热-流耦合机理对推动生物和医学进步具有重要意义。本文将能量守恒耗散粒子动力学(eDPD)方法拓展应用到高分子悬浮液流动问题,对存在温度梯度的微通道壁面间的高分子悬浮液流动进行了模拟,通过对比研究验证了方法的准确性和可靠性。在此基础上,研究了高分子在不同温度梯度下的运动特征,比较分析了高分子悬浮液在不同温度梯度、不同浓度及其耦合作用下的截面速度分布,探讨了温度梯度对高分子分布及拉伸、缠绕、折叠等行为的影响。结果表明,温度梯度对高分子质心概率分布和拉伸特性有明显的影响。这一结果为生物微型器件内生物高分子(药物或DNA)的精确控制与输送提供理论基础,并为研究热与高分子耦合的复杂动力学问题提供了一种新的途径。
        Macromolecule migration subjected to thermal gradient exists widely in biological and medical engineering problems. Exploring the thermo-hydrodynamic mechanism is of great significance both for biochemical engineering and micro/nanotechnology. In this paper, the energy-conserving dissipative particle dynamics(eDPD) is extended to investigate the flow of macromolecular solutions and macromolecule behaviors in a micro-channel subjected to thermal gradient. The accuracy and reliability of the codes are verified by comparative studies. Then, the velocity of macromolecular solutions under different temperature gradients and lengths, as well as their coupling effects are comparatively analyzed, and the macromolecular centroids distribution and behaviors including stretching, winding and folding are investigated systemically. The results show the macromolecular solution flow, probability distribution of centroids and the behaviors of macromolecules are obviously affected by thermal gradient, and some new features are revealed. The theoretical basis provides a potential way for the precise control of macromolecules(ex. drugs or DNA), and a new approach is proposed to investigate the complex dynamic behaviors of macromolecule under thermal condition.
引文
[1] Gooneie A,Schuschnigg S,Holzer C.Polymers,2017,9(1):16.
    [2] Fan X,Phanthien N,Chen S,Wu X,Yong N T.Phys Fluids,2006,18(6):861~136.
    [3] Perkins T T,Smith D E,Larson R G,Chu S.Science,1995,268(5207):83~7.
    [4] Litvinov S,Hu X,Ellero M.Microfluid Nanofluid,2014,16(1-2):257~264.
    [5] Kleβinger U A,Wunderlich B K,Bausch A R.Microfluid Nanofluid,2013,15(4):533~540.
    [6] Millan J A,Jiang W,Laradji M,Wang Y.J Chem Phys,2007,126(12):124905.
    [7] 许少锋,汪久根.高分子学报,2015(3):346~355.
    [8] 周吕文,刘谋斌,常建忠.高分子学报,2012(7):720~727.
    [9] Fan X,Phanthien N,Yong N T,Wu X,Xu D.Phys Fluids,2003,15(1):11~21.
    [10] Li Y,Abberton B C,Kroger M,Liu W.Polymers,2013,5(2):751~832.
    [11] Zhao J,Lu L,Zhang Z,Guo W,Rabczuk T.Comp Mater Sci,2015,96:432~438.
    [12] Espaňol P.Europhys Lett,1997,40(2):141
    [13] Toru Y,Anurag K,Yutaka A,Gregory O,Mohammad F.Numer Heat Tr A-Appl,2011,60(8):651~665.
    [14] Abu-Nada E.Int Commun Heat Mass,2015,69:84~93.
    [15] Qiao R,He P.Mol Simulat,2007,33(8):677~683.
    [16] Zhang Y,Luo X,Yi H,Tan H.Int J Heat Mass Tran,2016,97:279~288.
    [17] Larentzos J P,Brennan J K,Moore J D,Lísal M,Mattson W D.Comput Phys Commun,2014,185(7):1987~1998.
    [18] Moore J D,Barnes B C,Izvekov S,Lísal M,Sellers M S,Taylor D E,Brennan J K.J Chem Phys,2016,144(10):155.
    [19] Johansson E O,Yamada T,Sundén B,Yuan J.Int J Therm Sci,2016,101:207~216.
    [20] Li Z,Tang Y,Li X,Karniadakis G E.Chem Commun,2015,51(55):11038~11040.
    [21] Ripoll M,Espaňol P,Ernst M.Int J Mod Phys C,1998,9(08):1329~1338.
    [22] Abu-Nada E.J Heat Trans-Tasem,2011,133(11):112502.
    [23] Liu H,Jiang S,Chen Z,Liu M,Chang J,Wang Y,Tong Z.Microfluid Nanofluid,2015,18(5-6):1309~1315.
    [24] He P,Qiao R.J Appl Phys,2008,103(9):219~543.
    [25] Groot R D,Warren P B.J Chem Phys,1998,107(11):4423~4435.
    [26] Ulianova V,Zazerin A,Pashkevich G,Bogdan O,Orlov A.Sensor Actuat A-Phys,2015,234:113~119.
    [27] Yang T H,Kwon H J,Lee S S,An J,Koo J H,Kim S Y,Kwon D S.Sensor Actuat A-Phys,2010,163(1):180~190.
    [28] Chang M W,Finlayson B A.Numer Heat Tr A-Appl,1987,12(2):179~195.
    [29] Gan H,Chang J,Feng J J,Hu H H.J Fluid Mech,2003,481(481):385~411.
    [30] Jendrejack R M,Schwartz D C,Graham M D,Depablo J J.J Chem Phys,2003,119(2):1165~1173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700