钴离子掺杂聚多巴胺/聚苯乙烯复合材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cobaltion Deoped Polydopamine/Polystyrene Composites
  • 作者:李思汗 ; 王彦 ; 诸静 ; 于俊荣 ; 胡祖明
  • 英文作者:LI Si-han;WANG Yan;ZHU Jing;YU Jun-rong;HU Zu-ming;State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University;
  • 关键词:聚多巴胺 ; 金属掺杂 ; 三维网络结构 ; 聚苯乙烯
  • 英文关键词:polydopamine;;metal doping;;3D network structure;;polystyrene
  • 中文刊名:HCXW
  • 英文刊名:Synthetic Fiber in China
  • 机构:东华大学纤维材料改性国家重点实验室东华大学材料科学与工程学院;
  • 出版日期:2019-05-15 09:35
  • 出版单位:合成纤维
  • 年:2019
  • 期:v.48;No.363
  • 语种:中文;
  • 页:HCXW201905015
  • 页数:7
  • CN:05
  • ISSN:31-1361/TQ
  • 分类号:46-52
摘要
为实现多巴胺的高效聚合,将Co~(2+)引入多巴胺反应体系中,Co~(2+)的催化作用实现了多巴胺的快速聚合。在聚苯乙烯(PS)微球上黏附聚多巴胺(PDA),与不加金属离子的反应相比,当添加的CoCl_2·6H_2O对多巴胺的物质的量分数为40%时,得到相同PDA含量的复合微球的反应时间可以从16 h缩短至1 h,并且复合微球中PDA以及Co含量随着CoCl_2·6H_2O添加量的增加以及反应时间的延长而增加。复合微球粉末经过热压得到的复合材料具有三维网络结构,Co~(2+)的加入使得PDA与PS具有更好的相容性。PDA·Co/PS复合材料的热性能和力学性能比PDA/PS有更多的提升。
        To achieve high-efficiency polymerization of dopamine, Co~(2+)was introduced into the dopamine reaction system, the catalytic action of Co~(2+)achieved rapid polymerization of dopamine. The polydopamine(PDA) was adhered to the polystyrene(PS) microspheres. When the added molar ratio of CoCl_2·6 H_2O to dopamine was 40%, the reaction time of modified microspheres with the same PDA content could be shortened from 16 h to 1 h, compared with the reaction without metal ions. The content of PDA and Co in modified microspheres increased with increasing of the amount of CoCl_2·6 H_2O addition and reaction time.The composites with 3D network structure were prepared by hot pressing the powder of modified microspheres, and the introduction of Co~(2+)resulted in better compatibility between PDA and PS. In addition,the thermal and mechanical properties of PDA·Co/PS composites were more improved than that of PDA/PS.
引文
[1]LEE H,DELLATORE S M,MILLER W M,et al.Mussel-inspired surface chemistry for multifunctional coatings[J].Science,2007,318(5849):426-430.
    [2]PONZIO F,BARTHèS J,BOUR J,et al.Oxidant control of polydopamine surface chemistry in acids:a mechanism-based entry to superhydrophilic-superoleophobic coatings[J].Chemistry of Materials,2016,28(13):4697-4705.
    [3]DU X,LI L,BEHBOODI-Sadabad F,et al.Bio-inspired strategy for controlled dopamine polymerization in basic solutions[J].Polymer Chemistry,2017,8(14):2145-2151.
    [4]HUANG L,ARENA J T,MANICKAM S S,et al.Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification[J].Journal of Membrane Science,2014,460(9):241-249.
    [5]JIANG J H,ZHU L P,LI X L,et al.Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin[J].Journal of Membrane Science,2010,364(1):194-202.
    [6]WAN X,ZHAN Y,LONG Z,et al.High-performance magnetic poly(arylene ether nitrile)nanocomposites:co-modification of Fe3O4via mussel inspired poly(dopamine)and amino functionalized silane KH550[J].Applied Surface Science,2017,425:905-914.
    [7]LIU Y,AI K,LU L.Polydopamine and its derivative materials:Synthesis and promising applications in energy,environmental,and biomedical fields[J].Chemical Reviews,2014,114(9):5057-5115.
    [8]KANG S M,HWANG N S,YEOM J,et al.One-step multipurpose surface functionalization by adhesive catecholamine[J].Advanced Functional Materials,2012,22(14):2949-2955.
    [9]LUO J,ZHAO F,FEI X,et al.Mussel inspired preparation of polymer grafted graphene as a bridge between covalent and noncovalent methods[J].Chemical Engineering Journal,2016,293:171-181.
    [10]YANG H C,LUO J,LüY,et al.Surface engineering of polymer membranes via mussel-inspired chemistry[J].Journal of Membrane Science,2015,483:42-59.
    [11]JOSEP S,JAVIER S P,FELIX B,et al.Catechol-based biomimetic functional materials[J].Advanced Materials,2013,25(5):653-701.
    [12]FEI B,QIAN B,YANG Z,et al.Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine[J].Carbon,2008,46(13):1795-1797.
    [13]PHUA S L,YANG L,TOH C L,et al.Simultaneous enhancements of UV resistance and mechanical properties of polypropylene by incorporation of dopamine-modified clay[J].Acs Appl Mater Interfaces,2013,5(4):1302-1309.
    [14]SHEN H,GUO J,WANG H,et al.Bioinspired modification of h-BNfor high thermal conductive composite films with aligned structure[J].ACS Appl Mater Interfaces,2015,7(10):5701-5708.
    [15]WU J,TU W,ZHANG Y,et al.Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries[J].Powder Technology,2017,311:200-205.
    [16]CHO J H,VASAGAR V,SHANMUGANATHAN K,et al.Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams[J].Chemistry of Materials,2016,27(19):6784-6790.
    [17]WANG W,LI R,TIAN M,et al.Surface silverized meta-aramid fibers prepared by bio-inspired poly(dopamine)functionalization[J].Acs Appl Mater Interfaces,2013,5(6):2062-2069.
    [18]LIU H,ZHU L L,HE Y,et al.A novel method for fabricating elastic conductive polyurethane filaments by in-situ reduction of polydopamine and electroless silver plating[J].Materials&Design,2017,113:254-263.
    [19]YANG L,KONG J,ZHOU D,et al.Transition-metal-ion-mediated polymerization of dopamine:mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids[J].Chemistry,2014,20(25):7776-7783.
    [20]GAO Z,DUAN L,YANG Y,et al.Mussel-inspired tough hydrogels with self-repairing and tissue adhesion[J].Applied Surface Science,2018,427:74-82.
    [21]DU X,LI L,LI J,et al.UV-triggered dopamine polymerization:control of polymerization,surface coating,and photopatterning[J].Advanced Materials,2014,26(47):8029-8033.
    [22]ZHANG C,OU Y,LEI W X,et al.CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J].Angewandte Chemie,2016,128(9):3106-3109.
    [23]MACKAY M E,TUTEJA A,DUXBURY P M,et al.General strategies for nanoparticle dispersion[J].Science,2006,311(5768):1740-1743.
    [24]WAN C,FRYDRYCH M,CHEN B.Strong and bioactive gelatin-graphene oxide nanocomposites[J].Soft Matter,2011,7(13):6159-6166.
    [25]XIONG S,WANG Y,YU J,et al.Polydopamine particles for nextgeneration multifunctional biocomposites[J].Journal of Materials Chemistry A,2014,2(20):7578-7587.
    [26]SHANMUGANATHAN K,CHO J H,IYER P,et al.Thermooxidative stabilization of polymers using natural and synthetic melanins[J].Macromolecules,2011,44(24):9499-9507.
    [27]CHOZHAN C K,ALAGAR M,GNANASUNDARAM P.Synthesis and characterization of 1,1-bis(3-methyl-4-hydroxy phenyl)cyclohexane polybenzoxazine-organoclay hybrid nanocomposites[J].Acta Materialia,2009,57(3):782-794.
    [28]LIU B,JIN L,ZHENG H,et al.Ultrafine Co-based nanoparticles@mesoporous carbon nanospheres toward high-performance supercapacitors[J].Acs Applied Materials&Interfaces,2016,9(2):1746-1758.P
    [29]ZHU K,CHEN C,XU M,et al.In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U(VI)adsorption and reduction[J].Chemical Engineering Journal,2018,331:395-405.
    [30]YANG F K,ZHANG W,HAN Y,et al."Contact"of nanoscale stiff films[J].Langmuir,2012,28(25):9562-9572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700