用物种分布模型和距离抽样估计三江源藏野驴、藏原羚和藏羚羊的数量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Estimating abundance of Tibetan wild ass, Tibetan gazelle and Tibetan antelope using species distribution model and distance sampling
  • 作者:李欣海 ; 郜二虎 ; 李百度 ; 詹祥江
  • 英文作者:LI XinHai;GAO ErHu;LI BaiDu;ZHAN XiangJiang;Institute of Zoology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Academy of Forest,Inventory, and Planning, National Freostry and Grassland Administration;The High School Affiliated to Renmin University of China;
  • 关键词:三江源国家公园 ; 野生动物数量估计 ; 物种分布模型 ; 距离抽样 ; 有蹄类
  • 英文关键词:Three-River-Source National Park;;wildlife abundance;;species distribution models;;distance sampling;;ungulate species
  • 中文刊名:JCXK
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:中国科学院动物研究所动物生态与保护生物学院重点实验室;中国科学院大学;国家林业和草原局调查规划设计院;中国人民大学附属中学;
  • 出版日期:2019-01-15 11:40
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:v.49
  • 基金:中国科学院科技服务网络(STS)计划重点项目(批准号:KFJ-STS-ZDTP-013);; UNDP-GEF青海三江源生物多样性保护项目;; 国家自然科学基金面上项目(批准号:31772479,31572287)资助
  • 语种:中文;
  • 页:JCXK201902005
  • 页数:12
  • CN:02
  • ISSN:11-5840/Q
  • 分类号:57-68
摘要
三江源国家公园成立后,人们需要了解该区域关键有蹄类物种如藏野驴(Equus kiang)、藏原羚(Procaprapicticaudata)和藏羚羊(Pantholops hodgsonii)等物种的分布和数量,以便制定相应的保护规划.我们于2014~2017年夏季在三江源53.8×10~4km~2的范围内进行了样线调查,考察行程总计14597.8 km,记录到藏野驴3711头,藏原羚1187只,藏羚羊423只.为了准确估计有蹄类的数量,我们用随机森林模型量化了物种分布与22个环境变量的关系,预测了三大有蹄类在整个区域的分布和数量,并通过样线调查的数据进行校正,得到藏野驴、藏原羚和藏羚羊在三江源研究区域的总数分别为44240头、13162只和2390只.四年来三大有蹄类数量稳定.我们应用距离抽样的探测函数、随机森林模型中环境变量对物种数量的解释程度以及调查结果和模型结果的匹配程度进行不确定性分析,计算了动物估计数量的置信区间.我们建立了新的动物数量估计方法,适合于动物分布与环境变量关系密切并有样线调查结果的情况.
        There is an urgent need of understanding the distribution and abundance of the key species, Tibetan wild ass(Equus kiang), Tibetan gazelle(Procapra picticaudata) and Tibetan antelope(Pantholops hodgsonii) in the Three-River-Source National Park, especially after the first national park in China established there. We carried out field surveys in summers from 2014 to 2017 following the distance sampling protocol in the park, covering an area of 538000 km~2. The total length of the survey routes is 14597.8 km. We recorded 3711 individuals of Tibetan wild ass, 1187 individuals of Tibetan gazelles, and 423 individuals of Tibetan antelopes. In order to accurately estimate the species abundance, we used species distribution models to quantify the relationship between species accurrences and 22 environmental variables, and predicted the population density in the whole study area. We compared the model prediction and field survey results, and made adjustment accordingly. The estimated abundance of Tibetan wild ass, Tibetan gazelle and Tibetan antelope in the study area is 44240, 13162, and 2390, respectively. To evaluate the potential bias of the estimation, we took into account of survey uncertainties, model uncertainties, and adjustment uncertainties using the detaction function based on distance sampling, R2 of species distribution models, and spatial heterogeneity of model-observation matchness. Our new method for estimating species abundance is suitable for species whose distribution is well correlated with environmental varibles, and the results of distance sampling are available.
引文
1 Dong S C,Zhou C J,Wang H Y.Ecological crisis and countermeasures of the Three Rivers’Headstream Regions(in Chinese).J Nat Resour,2002,17:713-720[董锁成,周长进,王海英.“三江源”地区主要生态环境问题与对策.自然资源学报,2002,17:713-720]
    2 Qian S,Mao L X,Hou Y Y,et al.Livestock carrying capacity and balance between carrying capacity of grassland with added forage and actual livestock in the Qinghai-Tibet Plateau(in Chinese).J Nat Resour,2007,22:389-397,498[钱拴,毛留喜,侯英雨,等.青藏高原载畜能力及草畜平衡状况研究.自然资源学报,2007,22:389-397,498]
    3 Shao Q Q,Zhao Z P,Liu J Y,et al.The characteristics of land cover and macroscopical ecology changes in the source region of three rivers on Qinghai-Tibet Plateau during last 30 years(in Chinese).Geogr Res,2010,29:1439-1451[邵全琴,赵志平,刘纪远,等.近30年来三江源地区土地覆被与宏观生态变化特征.地理研究,2010,29:1439-1451]
    4 Krebs C J.Ecological Methodology.Menlo Park,California:Addison Wesley,1999
    5 Xu X L,Liu J Y,Shao Q Q,et al.The dynamic changes of ecosystem spatial pattern and structure in the Three-River Headwaters region in Qinghai Province during recent 30 years(in Chinese).Geogr Res,2008,27:829-838,974[徐新良,刘纪远,邵全琴,等.30年来青海三江源生态系统格局和空间结构动态变化.地理研究,2008,27:829-838,974]
    6 Sollmann R,Gardner B,Williams K A,et al.A hierarchical distance sampling model to estimate abundance and covariate associations of species and communities.Meth Ecol Evol,2016,7:529-537
    7 Fragoso J M V,Levi T,Oliveira L F B,et al.Line transect surveys underdetect terrestrial mammals:implications for the sustainability of subsistence hunting.PLoS One,2016,11:e0152659
    8 Hothorn T,Müller J,Schr?der B,et al.Decomposing environmental,spatial,and spatiotemporal components of species distributions.Ecol Monogr,2011,81:329-347
    9 Guisan A,Thuiller W.Predicting species distribution:Offering more than simple habitat models.Ecol Lett,2005,8:993-1009
    10 Boyce M S,Johnson C J,Merrill E H,et al.REVIEW:Can habitat selection predict abundance?J Anim Ecol,2016,85:11-20
    11 R Core Team.R:A language and environment for statistical computing.Vienna,Austria:R Foundation for Statistical Computing,2018
    12 Buckland S T,Anderson D R,Burnham K P,et al.Distance Sampling:Estimating Abundance of Biological Populations.London:Chapman and Hall,1993
    13 Hijmans R J,Cameron S E,Parra J L,et al.Very high resolution interpolated climate surfaces for global land areas.Int J Climatol,2005,25:1965-1978
    14 Harding D J,Gesch D B,Carabajal C C,et al.Application of the shuttle laser altimeter in an accuracy assessment of GTOPO30,a global 1-kilometer digital elevation model.Inter Arch Photogr Remote Sens,1999,32:81-85
    15 Sanderson E W,Jaiteh M,Levy M A,et al.The human footprint and the last of the wild.Bioscience,2002,52:891-904
    16 Olson D M,Dinerstein E,Wikramanayake E D,et al.Terrestrial ecoregions of the world:A new map of life on earth.Bioscience,2001,51:933-938
    17 Li X,Wang Y.Applying various algorithms for species distribution modelling.Integrat Zool,2013,8:124-135
    18 McCullagh P,Nelder J A.Generalized Linear Models.London:Chapman and Hall,1989
    19 Breiman L.Random forests.Mach Learn,2001,45:5-32
    20 Hopfield J J.Neural networks and physical systems with emergent collective computational abilities.Proc Natl Acad Sci USA,1982,79:2554-2558
    21 Breiman L,Friedman J H,Olshen R A,et al.Classification and Regression Trees.New York:Chapman and Hall,1984
    22 Ho T K.Random decision forest.In:Proceedings of 3rd International Conference on Document Analysis and Recognition.Montreal,1995.278-282
    23 Ho T K.The random subspace method for constructing decision forests.IEEE Trans Pattern Anal Machine Intell,1998,20:832-844
    24 Li X H.Using“random forest”for classification and regression(in Chinese).Chin J Appl Entomol,2013,50:1190-1197[李欣海.随机森林模型在分类与回归分析中的应用.应用昆虫学报,2013,50:1190-1197]
    25 Shao Q Q,Guo X J,Li Y Z,et al.Using UAV remote sensing to analyze the population and distribution of large wild herbivores(in Chinese).JRemote Sens,2018,22:497-507[邵全琴,郭兴健,李愈哲,等.无人机遥感的大型野生食草动物种群数量及分布规律研究.遥感学报,2018,22:497-507]
    26 Fischer J,Brosi B,Daily G C,et al.Should agricultural policies encourage land sparing or wildlife-friendly farming?Front Ecol Environ,2008,6:380-385
    27 Li X,Jiang G,Tian H,et al.Human impact and climate cooling caused range contraction of large mammals in China over the past two millennia.Ecography,2015,38:74-82
    28 Tang Z M.Coexistence and conflict between wildlife and human-Travelling at the wilderness area in the North Tibet(in Chinese).Chin Tibet,2010,6:16-21[唐召明.人与动物的共处与冲突--藏北“无人区”纪行.中国西藏,2010,6:16-21]
    29 Nepal S K,Weber K E,Tian X W.Can wildlife and local farmers coexist(in Chinese).AMBIO,1995,4:237-244[Nepal S K,Weber K E,田学文.野生生物与当地农民能否共存.AMBIO-人类环境杂志,1995,4:237-244]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700