高含铝推进剂低压固体火箭发动机尾流场复燃数值模拟与实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation and Experimental Investigation on Plume Afterburning of Low-Pressure Solid Rocket Motor with Highly Aluminized Propellant
  • 作者:杨育文 ; 邓康清 ; 余小波 ; 向进 ; 王相宇 ; 郭春亮 ; 朱雯娟
  • 英文作者:YANG Yu-wen;DENG Kang-qing;YU Xiao-bo;XIANG Jin;WANG Xiang-yu;GUO Chun-liang;ZHU Wen-juan;Hubei Institute of Aerospace Chemo-Technology;
  • 关键词:含铝推进剂 ; 低压 ; 固体火箭发动机 ; 尾流场 ; 复燃
  • 英文关键词:Aluminized-propellant;;Low-pressure;;Solid rocket motor;;Exhaust plume;;Afterburning
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:湖北航天化学技术研究所;
  • 出版日期:2017-01-18 17:00
  • 出版单位:推进技术
  • 年:2017
  • 期:v.38;No.237
  • 语种:中文;
  • 页:TJJS201703026
  • 页数:7
  • CN:03
  • ISSN:11-1813/V
  • 分类号:205-211
摘要
为研究高含铝推进剂低压固体火箭发动机的尾流场特性,利用流体计算软件Fluent,采用三维雷诺平均N-S方程和标准k-ε湍流模型,对高含铝固体推进剂低压发动机尾流场复燃进行了数值模拟和实验研究。结果表明:低压下高含铝固体推进剂羽流复燃时,温度分布呈现"双峰"的现象,第一温峰是纯气相燃烧形成的,第二温峰是铝粒子燃烧形成的;且铝粒径越小,第二温峰出现的位置离喷管越近,铝粒子温度越高,最高可达1124K;燃烧室压强越高,第二温峰出现的位置离喷管越远。发动机试车试验中也出现"双峰"的羽流温度场,且测得粒子最高温度为1141K,与模拟结果吻合较好。
        In order to study the combustion characteristics of the exhaust plume in a low-pressure solid rocket motor with highly-aluminized propellant,the afterburning behavior at low combustion pressure in the exhaust plume of a solid rocket motor with highly-aluminized propellant was simulated through the establishment of three-dimensional Reynolds-averaged N-S equations and the standard k-ε model by way of the computational fluid dynamics software(Fluent) and verified by experimental tests.The simulation results show that the temperature distribution of afterburning plume with highly-aluminized solid propellant under low pressure appears dual temperature peaks when the afterburning considered.The first peak is produced by the combustion of thegas components,while the second one by aluminum particles.The position where the second peak appearswill be closer to the nozzle as the particle sizes of aluminum get smaller,so does the maximum temperatureof particles,which can reach up to 1124 K.In the meanwhile,when the chamber pressure gets higher,thesecond peak will appear further to the nozzle.The results obtained are of accordance with those of the solidrocket motor experimental results,which shows similar dual temperature peaks and the maximum tempera-ture of particles of 1141 K in the plume.
引文
[1]高东磊.含硼富燃料推进剂一次燃烧性能研究[D].湖南:国防科技大学,2009.
    [2]陈超,王英红,张放利.铝粉粒径对高铝含量富燃料推进剂一次燃烧性能的影响[J].固体火箭技术,2010,33:670-674.
    [3]Law C K.A Simplified Theoretical Model for the VaporPhase Combustion of Metal Particles[J].Combustion Science and Technology,1973,7(5):197-212.
    [4]Yongjun L,Merrill W B.Numerical Simulation of Quasi-Steady,Single Aluminum Particle Combustion in Air[R].AIAA 98-0254.
    [5]Lynch P,Glumac N,Krier H.Combustion of 5μm Aluminum Particles in High Temperature,High Pressure,Water Vapor Environment[R].AIAA 2007-5643.
    [6]曹泰岳,张为华,王宁飞.轻金属颗粒燃烧理论研究进展[J].推进技术,1996,17(4):82-87.(CAO Taiyue,ZHANG Wei-hua,WANG Ning-fei.Progress in Research on Combustion Theory of Light-Metal Particles[J].Journal of Propulsion Technology,1996,17(4):82-87.
    [7]邓康清,王光天,王桂兰.超细铝粉的燃烧特性及燃烧模型[J].固体火箭技术,1996,19(1):28-37.
    [8]张光喜,周为民,张钢锤,等.固体火箭发动机尾焰流场特性研究[J].固体火箭技术,2008,31(1):19-23.
    [9]胡建新,夏智勋,刘君.非壅塞火箭冲压发动机补燃室两相流数值模拟[J].推进技术,2004,25(3).
    [10]刘晨.复杂燃烧流场数值模拟方法研究[D].南京:南京航空航天大学,2009,(3).
    [11]傅献彩,沈文霞,姚天扬,等.物理化学[M].高等教育出版社,2006,(1):192-234.
    [12]金秉宁,刘佩进,杜小坤,等.复合推进剂中铝粉粒度对分布燃烧响应和粒子阻尼特性影响.推进技术,2014,35(12):1701-1706.(JIN Bing-ning,LIU Peijin,DU Xiao-kun,et al.Propellant on Distributed Combustion Response and Particle Damping[J].Journal of Propulsion Technology,2014,35(12):1701-1706.)
    [13]Beckstead M W,Karthin V P.Modeling and Simulation of Combustion of Solid Propellant Ingredients Using Detailed Chemical Kinetics[R].AIAA 2004-4036.
    [14]李江,蔡体敏,肖育民,等.用RTR技术确定SRM燃烧室凝相粒子加入边界条件[J].推进技术,1999,20(5).30-34.(LI Jiang,CAI Ti-min,XIAO Yumin,et al.Determination of Injection Boundary Combustion of Particles in SRM Chamber Based on RTR Techniques[J].Journal of Propulsion Technology,1999,20(5):30-34.)
    [15]Xiao Yu-min,Amano R S.Velocity of Particles on Solid Propellant Surface[R].AIAA 2002-0640.
    [16]Beckstead M W.A Summary of Aluminum Combustion[R].ADA 425147,2004.
    [17]金乐骥,邓康清,王光天,等.超细铝粉燃烧特性初探[J].推进技术,1993,12(6):68-72.(JIN Le-ji,DENG Kang-qing,WANG Guang-tian.Primary Research on Combustion Performances of Superfine Aluminum Powder[J].Journal of Propulsion Technology,1993,12(6):68-72.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700