镉胁迫下菊芋的富集能力及其生理响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cd~(2+) Enrichment Capacity and Physiological Response of Helianthus tuberosus Under Cd~(2+) Stress
  • 作者:张航 ; 苟秋 ; 诸伊曼 ; 张琪 ; 王丹媚 ; 施力铭 ; 吴玉环 ; 方芳 ; 刘鹏
  • 英文作者:ZHANG Hang;GOU Qiu;ZHU Yiman;ZHANG Qi;WANG Danmei;SHI Liming;WU Yuhuan;FANG Fang;LIU Peng;Laboratory of Botany,Zhejiang Normal University;College of Life and Environment Sciences,Hangzhou Normal University;
  • 关键词:菊芋 ; 镉胁迫 ; 富集 ; 根际土壤
  • 英文关键词:Helianthus tuberosus;;cadmium stress;;enrichment;;rhizosphere soil
  • 中文刊名:GATE
  • 英文刊名:Guizhou Agricultural Sciences
  • 机构:浙江师范大学植物学试验室;杭州师范大学生命与环境科学学院;
  • 出版日期:2018-07-15
  • 出版单位:贵州农业科学
  • 年:2018
  • 期:v.46;No.335
  • 基金:国家自然科学基金项目(41571049);; 2016年浙江省新苗人才计划项目“镉胁迫下菊芋富集调控以及综合机理的探究”(2017R404020)
  • 语种:中文;
  • 页:GATE201807020
  • 页数:5
  • CN:07
  • ISSN:52-1054/S
  • 分类号:83-87
摘要
为重金属污染土壤净化及其开发利用提供科学依据,以徐州菊芋、潍坊菊芋为对象进行土培,研究镉(Cd~(2+))不同浓度(0.0mmol/L、0.10mmol/L、0.60mmol/L、1.20mmol/L)胁迫7d、14d、21d后菊芋根际土壤过氧化氢酶、土壤磷酸酶和土壤pH的变化,分析菊芋对镉的富集能力及其生理响应。结果表明:土壤加入低浓度重金属镉后,前期土壤过氧化氢酶活性上升,呈现出一定激活效应,但随着镉浓度的增加及胁迫时间延长呈抑制作用;土壤磷酸酶活性在前、中期均增大,随胁迫时间延长其活性被抑制;徐州菊芋、潍坊菊芋土壤酶活性的变化一致,其中徐州菊芋的适应能力更强;菊芋体内的镉含量随胁迫程度加深总体呈逐渐上升趋势,其分布特征为地下部分>地上部分,且转运系数均小于1,地上部分镉分布徐州菊芋为茎>叶,潍坊菊芋在中低浓度下为叶>茎;菊芋根系的富集系数均大于1。徐州菊芋、潍坊菊芋均表现出较好的耐镉性和富集能力。
        The Cd~(2+) enrichment capacity and physiological response of two Helianthus tuberosus varieties from Xuzhou and Weifang were analyzed under four Cd~(2+) concentrations(0.0 mmol/L,0.10 mmol/L,0.60 mmol/L and 1.20 mmol/L)after 7 d,14 dand 21 dby determining catalase and phosphatase activity and pH of rhizosphere soil around H.tuberosus to provide the scientific basis for purification and utilization of heavy metal contamination soil.Result:The catalase activity of rhizosphere soil around H.tuberosus rises at the earlier stage after the Cd~(2+) solution with a lower concentration is added into the soil but is inhibited with increase of Cd~(2+) concentration and stress days.The phosphatase activity of rhizosphere soil around H.tuberosus at earlier and medium stage rises but is inhibited with increase of stress days.There is no difference in soil enzyme activity betweenH.tuberosus variety from Xuzhou and from Weifang and the adaptive capacity of H.tuberosus variety from Xuzhou is higher than H.tuberosus variety from Weifang.The Cd~(2+) content in H.tuberosus plants shows a gradual rising trend with increase of Cd2+stress degree overall.The distribution feature is underground part>overground part and their transfer coefficients both are less than 1.The Cd2+distribution in overground part of H.tuberosus variety from Xuzhou is stem >leaf and the Cd~(2+) distribution in overground part of H.tuberosus variety from Weifang is leaf>stem under lower and medium Cd~(2+) concentration.The Cd~(2+) enrichment coefficient of H.tuberosus roots is more than 1.Two H.tuberosus varieties both have a better resistance to Cd~(2+) and Cd~(2+) enrichment capacity.
引文
[1]FOLGAR S,TORRES E,PéREZ-RAMA M,et al.Dunaliellasalina as marine microalga highly tolerant to but a poor remover of cadmium[J].Journal of Hazardous Materials,2009,165(1):486-493.
    [2]环境保护部国土资源部.全国土壤污染状况调查公报[N].中国国土资源报,2014-04-18(2).
    [3]甄燕红,成颜军,潘根兴,等.中国部分市售大米中Cd、Zn、Se的含量及其实物安全评价[J].安全与环境学报,2008,8(1):119-122.
    [4]INGWERSEN J,STRECK T.A regional-scale study on the crop uptake of cadmium from sandy soils:measurement and modeling[J].Journal of Environmental Quality,2005,34(3):1026-1035.
    [5]SATO A,TAKEDA H,OYANAGI W,et al.Reduction of cadmium uptake in spinach(Spinacia oleracea L.)by soil amendment with animal waste compost[J].Journal of Hazardous Materials,2010,181(1):298-304.
    [6]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学,2006,34(3):549-552.
    [7]SUTHARV,MEMON K S,MAHMOOD-UL-HASSAN M.EDTA-enhanced phytoremediation of contaminated calcareous soils:Heavy metal bioavailability,extractability,and uptake by maize and sesbania[J].Environmental Monitoring Assessment,2014,186(6):3957-3968.
    [8]PAN L,SINDEN M R,KENNEDY A H,et al.Bioactive constituents of Helianthus tuberosus(Jerusalem artichoke)[J].Phytochemistry Letters,2009,2(1):15-18.
    [9]RENGEL Z.Cadmium accumulation and translocation in two Jerusalem Artichoke(Helianthus tuberosus L.)cultivars[J].Pedosphere,2011,21(5):573-580.
    [10]张丽,彭重华,王莹雪,等.14种植物对土壤重金属的分布、富集及转运特性[J].草业科学,2014,31(5):833-838.
    [11]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [12]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [13]黄冬芬,黄耿磊,刘国道,等.重金属Cd处理对柱花草根际土壤酶活性的影响[J].热带作物学报,2011,32(4):603-607.
    [14]唐琨,朱伟文,周文新,等.土壤pH对植物生长发育影响的研究进展[J].作物研究,2013,27(2):207-212.
    [15]GARCIIA C,HERNANDEZ T,COSTA F,et al.Biochemical parameters in soils regenerated by the addition of organic wastes[J].Waste Management&Research,1994,12(6):457-466.
    [16]张玉兰,陈利军,张丽莉.土壤质量的酶学指标研究[J].土壤通报,2005,36(4):598-604.
    [17]MASCIANDARO G,CECCANTI B.Assessing soil quality in different agro-ecosystems through biochemical and chemico-structural properties of humicsubstances[J].Soil&Tillage Research,1999,51(1/2):129-137.
    [18]闫峰,吴雄平,梁东丽,等.外源重金属Cr、Cu、Se和Zn对土娄土酶活性的影响[J].西北农林科技大学学报(自然科学版),2008,36(7):91-98.
    [19]王一志,曹雪莹,谭长银,等.不同土壤pH对红壤稻田镉形态及水稻镉积累的影响[J].湖南师范大学学报(自然科学版),2017,40(1):10-16.
    [20]杨良静,何俊瑜,张兴平.Cd胁迫对水稻根际和非根际土壤酶活性的影响研究[J].六盘水师范学院学报,2015,27(4):10-14.
    [21]曾路生,廖敏,黄昌勇,等.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响[J].应用生态学报,2005,16(11):2162-2167.
    [22]张桂山,贾小明,马晓航,等.山东棕壤重金属污染土壤酶活性的预警研究[J].植物营养与肥料学报,2004,10(3):272-276.
    [23]杨红飞,严密,姚婧,等.铜、锌污染对油菜生长和土壤酶活性的影响[J].应用生态学报,2007,18(7):1484-1490.
    [24]黄峥,闵航,吕镇梅,等.铜离子与铜镉离子复合污染对稻田土壤酶活性的影响研究[J].浙江大学学报(农业与生命科学版),2006,32(5):557-562.
    [25]吴丹,王友保,李伟,等.镉胁迫对吊兰生长与土壤酶活性的影响[J].环境化学,2012,31(10):1562-1568.
    [26]方继宇,贾永霞,张春梅,等.马缨丹对镉的生长响应及其富集、转运和亚细胞分布特点研究[J].生态环境学报,2014,2(10):1677-1682.
    [27]赵艳玲,张长波,刘仲齐.植物根系细胞抑制镉转运过程的研究进展[J].农业资源与环境学报,2016,33(3):209-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700