铁碳微电解耦合苦草原位处理河道黑臭污水的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Treatment of Black Odorous Water in the River with Iron-Carbon Microelectrolysis Coupled with Vallisneria Natans
  • 作者:陈超 ; 胡勇有 ; 谢玲彩
  • 英文作者:CHEN Chao;HU Yongyou;XIE Lingcai;School of Civil and Transportation,South China University of Technology;School of Environment and Energy∥The MOE Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters,South China University of Technology;
  • 关键词:黑臭污水 ; 铁碳微电解 ; 苦草 ; 硝化 ; 自养反硝化 ; 协同作用
  • 英文关键词:black odorous water;;iron carbon microelectrolysis;;vallisneria natans;;nitrification;;autotrophic denitrification;;synergy
  • 中文刊名:HNSF
  • 英文刊名:Journal of South China Normal University(Natural Science Edition)
  • 机构:华南理工大学土木与交通学院;华南理工大学环境与能源学院∥工业聚集区污染控制与生态修复教育部重点实验室;
  • 出版日期:2019-06-28 15:20
  • 出版单位:华南师范大学学报(自然科学版)
  • 年:2019
  • 期:v.51
  • 基金:广东省科技计划项目(2015B020235009)
  • 语种:中文;
  • 页:HNSF201904007
  • 页数:8
  • CN:04
  • ISSN:44-1138/N
  • 分类号:44-51
摘要
采用铁碳微电解耦合苦草原位处理河道黑臭污水技术,开展模拟实验,考察了铁碳组、苦草组及铁碳耦合苦草组对黑臭水体的净化效果,讨论了水质净化机理.结果表明,处理20 d,耦合组对COD、NH4+-N、TN和TP的去除率分别为94.2%、85.7%、82.9%和96.1%,水质指标分别稳定在13.68±1.81、1.41±0.75、5.02±0.86、0.21±0.05 mg/L;溶解氧(DO)和氧化还原电位(ORP)快速提升,分别由0.68 mg/L、-126.37 m V升高并稳定至(6.35±0.22) mg/L和(235.42±3.41) m V.耦合组对黑臭水的净化效果显著优于单一的苦草、铁碳填料组.耦合组的微生物多样性和丰度也有了明显改善,与降解有机物、脱氮除磷等过程相关的微生物群落相对丰度呈增加趋势,优势菌门有Proteobacteria、Bacteroidetes、Actinobacteria、Firmicutes,优势菌属为Sediminibacterium、Candidatus Nitrotoga、Pseudomonas.耦合组处理过程以铁碳微电解氧化还原降解COD、产生质子[H]和Fe~(2+)为自养反硝化提供电子、Fe~(2+)氧化后的Fe~(3+)生成FePO_4沉淀等作用以及根际微生物和陶粒生物膜降解有机物和硝化反硝化作用为主,辅以苦草吸收氮磷,苦草光合产氧、根际泌氧作用及分泌物促进微生物硝化反硝化,通过协同作用净化水质.该研究为采用铁碳微电解耦合沉水植物快速净化河道黑臭水体提供了依据.
        The technology of iron-carbon microelectrolysis coupled with Vallisneria natans was constructed to treat black odorous water in the river,and simulation experiments were carried out to investigate the effect of an iron-carbon group,a Vallisneria natans group and a group of iron-carbon coupled with Vallisneria natans on the purification of black odorous water. The mechanisms of water purification in the experiments were discussed. The results showed that,in the coupling group,the removal rates of COD,NH_4~+-N,TN and TP were 94.2%,85.7%,82.9%and 96.1% respectively,and the water quality indexes were stable at 13.68±1.81,1.41±0.75,5.02±0.86 and 0.21±0.05 mg/L respectively; DO and ORP increased rapidly from 0.68 mg/L and-126.37 m V to( 6.35±0.22) mg/L and( 235.42±3.41) m V respectively. The effect of the coupling group on the black odorous water purification is significantly better than that of the Vallisneria natans and iron carbon groups. The microbial diversity and abundance of the coupled group also improved significantly. The relative abundance of microbial communities related to the process of organic matter degrading and nitrogen and phosphorus removal increased. The dominant phyla of microorganisms were Proteobacteria,Bacteroidetes,Actinobacteria,Firmicutes,and the dominant genera included Sediminibacterium,Candidatus Nitrotoga and Pseudomonas. In the coupling group,COD was decomposed with iron-carbon microelectrolysis redox,which produced [H] and Fe~(2+) to provide electrons for autotrophic denitrification.Fe~(3+) resulting from Fe~(2+) oxidation formed FePO_4 precipitate,and the ceramsite adsorbed nitrogen,phosphorus and organic matter. Rhizosphere microorganisms and ceramsite biofilms degraded organic matter and promoted nitrification and denitrification. Vallisneria natans worked to absorb nitrogen and phosphorus and produce oxygen through photosynthesis. Rhizosphere oxygen secretion and secretions promoted microbial nitrification and denitrification,giving rise to the synergistic effect of water purification. This study provides a basis for the rapid purification of black odorous water bodies with iron-carbon microelectrolysis coupled with submerged plants.
引文
[1] HASEGAWA N,HORI M. Seasonal changes in eelgrass functions:current velocity reduction,prevention of sediment resuspension,and control of sediment-water column nutrient flux in relation to eelgrass dynamics[J]. Hydrobiologia,2008,596(1):387-399.
    [2] SOANA E,BARTOLI M. Seasonal regulation of nitrification in a rooted macrophyte(Vallisneria spiralis L.)meadow under eutrophic conditions[J]. Aquatic Ecology,2014,48(1):11-21.
    [3] ZHOU Y,ZHOU X,HAN R,et al. Reproduction capacity of Potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes[J].Science of the Total Environment,2017,580:1421-1428.
    [4] ZENG L,HE F,DAI Z G,et al. Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical shallow lake[J]. Ecological Engineering,2017,106:578-587.
    [5]周裔文,许晓光,韩睿明,等.水体氮磷营养负荷对苦草净化能力和光合荧光特性的影响[J].环境科学,2018,39(3):1180-1187.ZHOU Y W,XU X G,HAN R M,et al. Effect of nutrient loadings on the regulation of water nitrogen and phosphorus by Vallisneria natans and Its photosynthetic fluorescence characteristics[J]. Environmental Science,2018,39(3):1180-1187.
    [6] WANG J,CHEN G,LIU F,et al. Combined ozonation and aquatic macrophyte(Vallisneria natans)treatment of piggery effluent:water matrix and antioxidant responses[J].Ecological Engineering,2017,102:39-45.
    [7] ZHENG X Y,JIN M Q,ZHOU X,et al. Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C,N,and P in salty permitted effluent of wastewater treatment plant[J]. Science of the Total Environment,2019,649:21-30.
    [8] YANG X Y. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology[J]. Journal of Hazardous Materials,2009,169(1/2/3):480-485.
    [9] HASHIM M A,MUKHOPADHYAY S,SAHU J N,et al.Remediation technologies for heavy metal contaminated groundwater[J]. Journal of Environmental Management,2011,92(10):2355-2388.
    [10] DENG S H,LI D S,YANG X,et al. Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition[J]. Bioresource Technology,2016,219:677-686.
    [11] XING W,LI D S,LI J L,et al. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification[J]. Bioresource Technology,2016,211:240-247.
    [12]宗小香,闵梦月,孙广芳,等.铁-碳内电解质下4种水生植物的净水效果[J].应用生态学报,2016,27(7):2084-2090.ZONG X X,MIN M Y,SUN G F,et al. Water purification of four aquatic plant species with the presence of ironcarbon interior electrolytic substrates[J]. Chinese Journal of Applied Ecology,2016,27(7):2084-2090.
    [13]陈欣,祝惠,阎百兴,等.铁碳微电解基质强化人工湿地污染物去除率的室内模拟实验[J].湿地科学,2018,16(5):684-689.CHEN X,ZHU H,YAN B X,et al. Indoor simulation experiment on pollutant removal rates by micro-electrolysis material Intensified constructed wetland[J]. Wetland Science,2018,16(5):684-689.
    [14]王敏,于鲁冀,安树青.人工湿地新型内电解基质的研究[J].环境工程学报,2011,5(6):1301-1304.WANG M,YU L J,AN S Q. Study on a new type of internal-electrolysis substrates of constructed wetland[J].Chinese Journal of Environmental Engineering,2011,5(6):1301-1304.
    [15]住房城乡建设部环境保护部.城市黑臭水体整治工作指南[EB/OL].[2015-08-28]. http:∥www.mohurd.gov.cn/wjfb/201509/t20150911_224828.html.
    [16]国家环保局本书编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [17]林运通,崔理华,范远红,等. 5种湿地沉水植物对模拟污水厂尾水的深度处理[J].环境工程学报,2016,10(12):6914-6922.LIN Y T,CUI L H,FAN Y H,et al. Advanced treatment of simulated tail water of wastewater treatment plant by five submerged plants in wetlands[J]. Chinese Journal of Environmental Engineering,2016,10(12):6914-6922.
    [18]郭杏妹,刘素娥,张秋云,等.三种人工湿地植物处理农村生活污水的净化效果[J].华南师范大学学报(自然科学版),2010(1):105-109.GUO X M,LIU S E,ZHANG Q Y,et al. Effects of three plants species in constructed wetlands on the treatment for rural domestic sawage[J]. Journal of South China Normal University(Natural Science Edition),2010(1):105-109.
    [19] XING W,LI J L,LI D S,et al. Stable-isotope probing reveals activity and function of autotrophic and heterotrophic denitrifiers in nitrate removal from organic-limited wastewater[J]. Environmental Science&Technology,2018,52(14):7867-7875.
    [20]韩华杨,李正魁,王浩,等.伊乐藻-固定化脱氮微生物技术对入贡湖河道脱氮机制的影响[J].环境科学,2016,37(4):1397-1403.HAN H Y,LI Z K,WANG H,et al. Effect of elodea nuttallii-immobilized nitrogen cycling bacteria on nitrogen removal mechanism in an inflow river,Gonghu Bay[J].Environmental Science,2016,37(4):1397-1403.
    [21]张翠英,徐德兰,万蕾,等.环境因子对湖泊沉积物碱性磷酸酶活性的影响[J].环境科学与技术,2013,36(4):23-27.ZHANG C Y,XU D L,WAN L,et al. Impact of environmental factors on alkaline phosphatase activity of sediment in lakes[J]. Environmental Science&Technology,2013,36(4):23-27.
    [22] DENG S L,LI D,YANG X,et al. Iron[Fe(0)]-rich substrate based on iron-carbon micro-electrolysis for phosphorus adsorption in aqueous solutions[J]. Chemosphere,2016,168:1486-1493.
    [23] WANG C,LIU Z,ZHANG Y,et al. Synergistic removal effect of P in sediment of all fractions by combining the modified bentonite granules and submerged macrophyte[J]. Science of the Total Environment,2018,626:458-467.
    [24]孔优佳,徐东炯,刘其根,等.滆湖湖滨带生态修复技术初步研究[J].水生态学杂志,2017,38(2):17-24.KONG Y J,XU D J,LIU Q G,et al. Ecological restoration technology applied in the lakeside zone demonstration project of Gehu Lake[J]. Journal of Hydroecology,2017,38(2):17-24.
    [25]李彬,靖元孝,王忠正,等.互叶白千层Melaleuca alternifolia)浮床对生活污水净化效果研究初报[J].华南师范大学学报(自然科学版),2010(2):90-95.LI B,JING Y X,WANG Z Z,et al. Preliminary study on purifying effect of melaleuca alternifolia grown in floatingbed systems to domestic wastewater[J]. Journal of South China Normal University(Natural Science Edition),2010(2):90-95.
    [26] XING W,LI D S,LI J L. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification[J]. Bioresource Technology,2016,211:240-247.
    [27] RAMALHO R S. Introduction to wastewater treatment process[J]. Water Research,1985(3):402-404.
    [28] SHEN Z,HU J,WANG J. Biological denitrification using starch/polycaprolactone blends as carbon source and biofilm support[J]. Desalination and Water Treatment,2015,54(3):609-615.
    [29] KATARZYNA B,DOROTA K,KAROL Z. Glycerine as a carbon source in nitrite removal and sludge production[J]. Chemical Engineering Journal,2015,267:324-331.
    [30] CHOUARI R,PASLIER D L,DAEGELEN P,et al. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester[J].Environmental Microbiology,2010,7(8):1104-1115.
    [31] ZHOU Y,ZHOU X,HAN R,et al. Reproduction capacity of potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes[J]. Science of the Total Environment,2017,580:1421-1428.
    [32] LUCKER S,SCHWARZ J,GRUBER-DORNINGER C,et al. Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants[J]. The ISME Journal,2015,9(3):708-720.
    [33] SURESH N,WARBURG R,TIMMERMAN M,et al. New strategies for the isolation of microorganisms responsible for phosphate accumulation[J]. Water Science&Technology,1985,17:99-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700