超声速单边扩张燃烧室分离区振荡现象及其解耦分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Decoupling Analysis on Oscillation of Separated Region in a Supersonic Combustor with Single-Side Expansion
  • 作者:高天运 ; 梁剑寒 ; 孙明波
  • 英文作者:GAO Tian-yun;LIANG Jian-han;SUN Ming-bo;Science and Technology on Scramjet Laboratory,National University of Defense Technology;
  • 关键词:超声速燃烧 ; 反压 ; 分离区 ; 激波边界层干扰 ; 解耦分析
  • 英文关键词:Supersonic combustion;;Backpressure;;Separated region;;Shockwave/boundary layer interaction;;Decoupling analysis
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:国防科学技术大学高超声速冲压发动机技术重点实验室;
  • 出版日期:2018-09-20 10:57
  • 出版单位:推进技术
  • 年:2018
  • 期:v.39;No.256
  • 基金:国家自然科学基金(11522222)
  • 语种:中文;
  • 页:TJJS201810023
  • 页数:13
  • CN:10
  • ISSN:11-1813/V
  • 分类号:227-239
摘要
为了揭示超声速燃烧中非定常现象的主导机制,通过解耦分析系统研究了单边扩张燃烧室中一种以分离区不稳定为特征的非稳态燃烧。采用控制变量的方法,对Ma=6条件(隔离段来流马赫数3.46,总温1430K)下燃烧不稳定的可能影响因素进行了解耦分析,并对典型工况在直连式实验台上开展了验证。研究表明,火焰不是本文中燃烧不稳定现象的主要影响因素,释热形成的反压才是该现象的主因。低当量比工况下反压较小,流场的非稳态机制由射流和凹腔共同主导;中高当量比工况下反压较大,非稳态机制由反压主导。射流与凹腔相互作用能形成周期性极强的非稳态过程,其压力振荡频率约为200Hz。在较高反压的驱动下,超声速燃烧室内会发生复杂的非定常现象,具体表现为激波串轴向大幅振荡,并伴有非对称分离区的间歇性切换。由反压主导的流场振荡周期性不强、频率以中低频为主(100~500Hz)。非稳态过程可能源于激波边界层干扰中的低频不稳定性,其被燃烧释热所形成的分离区放大,在下游反压的影响下形成了流场中复杂的非定常过程。
        For the purpose of uncovering the key physics of unsteady phenomena in supersonic combustion,a decoupling analysis is implemented to study the unsteady combustion induced by separation in a singleexpanded supersonic combustor. The control variate method is applied to discover the key impact factor of the unsteady combustion under Mach 6 flight condition(isolator entrance Mach number of 3.46,and air stagnation temperature of 1430 K). Experiments have been implemented on a direct connect facility to verify the main viewpoints of typical operating conditions. The systematic researches indicate that flame does not have much impact on the unsteady behaviors of combustion,and the backpressure induced by heat release is what really matters. The jet together with cavity account for the periodic oscillation at low equivalence ratio(the backpressure is relatively low),and the frequency of static pressure oscillation is about 200 Hz. The backpressure(high enough)caused by heat release results in the complicated dynamic combustion under higher equivalence ratios. During the dynamic process,the shock train travels along the length of the combustor with high amplitude,and the asymmetric separated region switches intermittently between both sides of walls. The oscillation induced by backpressure is broadband,and the main component of oscillation is low frequency(100~500 Hz). The low frequency unsteady process may be related to the low frequency unsteadiness in shockwave/boundary layer interaction(SWBLI). Such an unsteadiness is amplified by the large separated region and promoted by the backpressure from downstream,which forms a complex unsteady process.
引文
[1] Frost M A,Gangurde D Y,Paull A,et al. Boundary Layer Separation Due to Combustion Induced Pressure Rise in a Supersonic Flow[J]. AIAA Journal,2009,47(4):1050-1053.
    [2] Rodriquez C. Asymmetry Effects in Numerical Simulation of Supersonic Flows with Upstream Separated Regions[R]. AIAA 2001-0084.
    [3] Mohieldin T,Tiwari S,Olynciw,M. Asymmetric FlowStructures in Dual Mode Scramjet Combustor with Significant Upstream Interaction[R]. AIAA 2001-3296.
    [4] Lin K C,Jackson K,Behdadnia R,et al. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Cavity Flameholder[J]. Journal of Propulsion and Power,2010,26(6):1161-1170.
    [5] Fotia M L,Driscoll J F. Ram-Scram Transition and Flame/Shock-Train Interactions in a Model Scramjet Experiment[J]. Journal of Propulsion and Power,2013,29(1):261-273.
    [6] Koo H,Raman V. Large-Eddy Simulation of a Supersonic Inlet-Isolator[J]. AIAA Journal,2012,50(7):1596-1613.
    [7] Geerts J S,Yu K H. Experimental Characterization of Isolator Shock Train Propagation[R]. AIAA 2012-5891.
    [8] Su W Y,Zhang K Y. Back-Pressure Effects on the Hypersonic Inlet-Isolator Pseudoshock Motions[J]. Journal of Propulsion and Power,2012,29(6):1391-1399.
    [9] Su W Y,Ji Y X,Chen Y. Effects of Dynamic Backpressure on Pseudoshock Oscillations in Scramjet Inlet-Isolator[J]. Journal of Propulsion and Power,2016,32(2):516-528.
    [10]熊冰,王振国,范晓樯,等.隔离段内正激波串受迫振荡特性研究[J].推进技术,2017,38(1):1-7.(XIONG Bing,WANG Zhen-guo,FAN Xiao-qiang,et al. Characteristics of Forced Normal Shock-Train Oscillation in Isolator[J]. Journal of Propulsion Technology,2017,38(1):1-7.)
    [11] Reijasse P,Corbel B,Soulevant D. Unsteadiness and Asymmetry of Shock-Induced Separation in a Planar Two-Dimensional Nozzle-a Flow Description[R].AIAA 99-3694.
    [12] Papamoschou D,Zill A. Fundamental Investigation of Supersonic Nozzle Flow Separation[R]. AIAA 2004-1111.
    [13] Papamoschou D,Johnson A D. Unsteady Phenomena in Supersonic Nozzle Flow Separation[R]. AIAA 2006-3360.
    [14] Xiao Q,Tsai H M,Papamoschou D. Numerical Investi-gation of Supersonic Nozzle Flow Separation[J]. AIAA Journal,2007,45(3):532-541.
    [15] Papamoschou D,Johnson A D. Instability of Shock-Induced Nozzle Flow Separation[J]. Physics of Fluids,2010,22(1).
    [16] Olson B,Lele S K. Low Frequency Unsteadiness in Nozzle Flow Separation[R]. AIAA 2012-2974.
    [17] Laurence S J,Lieber D,Martinez Schramm J,et al. Incipient Thermal Choking and Stable Shock-Train Formation in the Heat-Release Region of a Scramjet Combustor,Part I:Shock-Tunnel Experiments[J]. Combustion and Flame,2015,162(4):921-931.
    [18] Yuan Y,Zhang T,Yao W,et al. Study on Flame Stabilization in a Dual-Mode Combustor Using Optical Measurements[J]. Journal of Propulsion and Power,2015,31(6):1524-1531.
    [19] Sun M B,Zhong Z,Gao T Y,et al. Asymmetric Combustion Characteristics of Transverse Ethylene Injection in a Rectangular Supersonic Combustor with Single-Side Expansion[R]. AIAA 2016-4759.
    [20] Gao T Y,Liang J H,Sun M B,et al. Dynamic Combustion Characteristics in a Rectangular Supersonic Combustor with Single-Side Expansion[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2017,231(10):1862-1872.
    [21]高天运,梁剑寒,孙明波,等.单边扩张燃烧室燃烧非对称及非稳态现象研究[J].推进技术,2016,37(3):419-427.(GAO Tian-yun,LIANG Jian-han,SUN Ming-bo,et al. Investigation of Asymmetric and Unsteady Combustion in a Supersonic Combustor with Single-Side Expansion[J]. Journal of Propulsion Technology,2016,37(3):419-427.)
    [22] Sun M B,Zhong Z,Liang J H,et al. Experimental Investigation of Supersonic Model Combustor with Distributed Injection of Supercritical Kerosene[J]. Journal of Propulsion and Power,2014,30(6):1537-1542.
    [23]王振国.液体火箭发动机燃烧过程建模与数值仿真[M].北京:国防工业出版社,2012.
    [24] Rossiter J E. Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Supersonic and Transonic Speeds[R]. Reports and Memoranda No. 3438,1964.
    [25] Clemens N T,Narayanaswamy V. Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions[J]. Annual Review of Fluid Mechanics,2014,46(1):469-492.
    [26] Piponniau S,Dussauge J P,Debiève J F,et al. A Simple Model for Low-Frequency Unsteadiness in Shock-Induced Separation[J]. Journal of Fluid Mechanics,2009,629:87-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700