基于拓展分离变量法的层合材料瞬态传热分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transient heat transfer analysis of laminated materials based on extended separation of variables
  • 作者:李长玉 ; 林水木 ; 戴海燕 ; 吕东霖
  • 英文作者:Li Chang-Yu;Lin Shui-Mu;Dai Hai-Yan;Lü Dong-Lin;School of Automotive and Traffic Engineering, Guangzhou College of South China University of Technology;Mechanical Engineering Department, Kun Shan University;
  • 关键词:层合材料 ; 拓展分离变量法 ; 瞬态传热
  • 英文关键词:laminated materials;;extended separation of variables;;transient heat transfer
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:华南理工大学广州学院汽车与交通工程学院;昆山科技大学机械工程系;
  • 出版日期:2018-10-30 14:30
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:广东省青年创新人才基金(批准号:2016KQNCX226)资助的课题~~
  • 语种:中文;
  • 页:WLXB201821024
  • 页数:8
  • CN:21
  • ISSN:11-1958/O4
  • 分类号:245-252
摘要
层合材料各层热物理参数不同,难以用常规的分离变量法求解.针对此问题对常规分离变量法进行了拓展,将层合材料受热时的温度场在时间域上分成微小时间段,在每个微小时间段内层合材料交界处的温度可认为随时间正比变化,并假设比例系数,此时在微小时间段内对各层分别利用分离变量法单独求得解析解,根据交界处温度相等能量连续的关系可求出比例系数,进而求出该微小时间段内的温度场,通过循环求解可得整个时间段内的温度场.之后,利用拓展的分离变量法对常用层合隔热材料瞬态传热进行了分析,通过与有限元方法计算的结果比较,验证了本文方法的正确性,分析了隔热材料类型、厚度,材料表面对流换热系数,空气温度等参数对隔热效果的影响.拓展分离变量法利用解析的方式求解了层合材料瞬态传热问题,物理意义比常规的数值方法明确,计算效率也较高.
        In general, when the one-dimensional heat conduction equation is solved by the method of separation of variables,we need to know the governing equations, two boundary conditions and initial condition. Because the thermophysical parameters in different layers of laminated materials are different, the heat conduction model cannot be expressed by the same governing equation. For each layer of laminated material, the boundary condition is unknown. That equation can-not be solved directly by the general separation variable method. In this work the separation of variable method is extended. The temperature field of laminated material's heat transfer is divided into many minute time intervals on the time axis. Based on differential conception, in a minimum time interval, the temperature at the junction of laminated materials can be considered to be proportional to time. Assume that the slope coefficient makes the boundary condition known, then for each layer of laminated materials, the general separation of variables method will be used to solve the temperature field. According to the same temperature and the energy continuity at the junction of laminated materials,one can solve the slope coefficient. The temperature field in the whole time domain can be obtained through cycling.Then the three-layer insulation materials are analyzed by the extended separation variable method. The correctness of the method is verified by comparing the calculated results with those from the finite element method. The influences of the type and thickness of heat insulation layer, heat transfer coefficient, air temperature on the heat insulation are studied. It is found that the thermal conductivity of the thermal insulation layer has a great influence on the insulation.The material with low heat conduction coefficient can enhance the heat insulation effect. The thicker the thickness of the insulation layer, the more slowly the surface temperature of the heat insulation material rises, and the lower the final temperature, the better the insulation effect is. The thicker the thickness of the insulation layer, the smaller the heat flux density of the heat insulation material shell is, and the better the heat insulation effect when the heat transfer reaches a stable state. All calculation results are consistent with physical phenomena. In this work, the analytical method is used to solve the heat transfer problem of laminated materials. Compared with the general numerical methods, the analytical method presents clear physical meaning and high efficiency of operation as well.
引文
[1] Wang M, Feng J Z, Jiang Y G, Zhang Z M, Feng J 2016Mater. Rev. 30 461(in Chinese)[王苗,冯军宗,姜勇刚,张忠明,冯坚2016材料导报30 461]
    [2] Tang J J, Xu X M 2011 Pack. Eng. 32 34(in Chinese)[唐静静,徐雪萌2011包装工程32 34]
    [3] Song H Y, Tian M M, Wu Y Y 2016 Pack. Eng. 37 56(in Chinese)[宋海燕,田萌萌,伍亚云2016包装工程3756]
    [4] Daryabeigi K 2002 J. Thermophys. Heat Transfer 17 10
    [5] Daryabeigi K, Cunnington G R, Knutson J R 2013 J.Thermophys. Heat Transfer 27 414
    [6] Al-sanea S A, Zedan M F 2011 Appl. Energy 88 3113
    [7] Xu F, Lu T J, Seffen K A 2008 J. Mech. Phys. Solids56 1852
    [8] Li J E, Wang B L, Chang D M 2011 Acta Mech. Solida.Sin. 32 248(in Chinese)[李金娥,王保林,常冬梅2011固体力学学报32 248]
    [9] Rahideh H, Malekzadeh P, Haghighi M G 2012 Energ.Convers. Manage. 55 14
    [10] He K L, Chen Q, Dong E F, Ge W C, Hao J H, Xu F2018 Appl. Therm. Eng. 129 1551
    [11] Wang B L, Cui Y J 2017 Appl. Therm. Eng. 119 207
    [12] Liu K C, Wang Y N, Chen Y S 2012 Int. J. Thermal Sci. 58 29
    [13] Li L, Zhou L, Yang M 2016 Int. J. Heat Mass Transfer93 834
    [14] Wu Z K, Li F L, Kwak D Y 2016 Chin. J. Comput. Phys.33 49(in Chinese)[吴自库,李福乐, Kwak D Y 2016计算物理33 49]
    [15] Liu F, Shi W P 2015 Appl. Math. Mech. 36 1158(in Chinese)[刘芳,施卫平2015应用数学和力学36 1158]
    [16] Hu J X, Gao X W 2016 Acta Phys. Sin. 65 014701(in Chinese)[胡金秀,高效伟2016物理学报65 014701]
    [17] Wang H G, Wu D, Rao Z H 2015 Acta Phys. Sin. 64244401(in Chinese)[王焕光,吴迪,饶中浩2015物理学报64 244401]
    [18] Wang G, Xie Z H, Fan X D, Chen L G, Sun F R 2017Acta Phys. Sin. 66 204401(in Chinese)[王刚,谢志辉,范旭东,陈林根,孙丰瑞2017物理学报66 204401]
    [19] Ma J, Sun Y, Yang J 2017 Int. J. Heat Mass Transfer115 606
    [20] Lin S M, Li C Y 2016 Int. J. Thermal Sci. 110 146
    [21] Wang W, Ding H L, Zhang Z K, Shen L 2013 Acta Mater. Compos. Sin. 30 14(in Chinese)[汪文,丁宏亮,张子宽,沈烈2013复合材料学报30 14]
    [22] Zhao Y P, Yan G J, Chen D M, Chen L, Dong Z Z, Fu W G 2013 J. Funct. Mater. 16 697(in Chinese)[赵义平,阎家建,陈丁猛,陈莉,董知之,付维贵2013功能材料16 697]
    [23] Liu C N, Zhang S X, Zhou H Q, Xu D M, Li M Q 2011J. Jilin Inst. Chem. Tech. 28 29(in Chinese)[刘翠娜,张双喜,周恒勤,许冬梅,李美芹2011吉林化工学院学报28 29]
    [24] Liu B Z, Wang D W 2011 J. Northeast Univ. 32 302(in Chinese)[刘保政,汪定伟2011东北大学学报32 302]
    [25] He C H, Feng X 2001 Chemical Principle(Beijing:Science Press)pp190–193(in Chinese)[何潮洪,冯霄2001化工原理(北京:科学出版社)第190—193页]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700