海上风电大尺度筒型基础分舱优化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimal Subdivision Design of Large-scaled Bucket Foundation of the Offshore Wind Power Plant
  • 作者:丁红岩 ; 朱岩
  • 英文作者:DING Hong-yan;ZHU Yan;State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University;Key Laboratory of Coast Civil Structure Safety,Ministry of Education,Tianjin University;School of Civil Engineering,Tianjin University;
  • 关键词:大尺度筒型基础 ; 分舱 ; MOSES ; 初稳性高 ; 面积比K ; 气浮结构
  • 英文关键词:large-scaled bucket foundation;;subdivision;;MOSES;;meta-centric height;;area ratio K;;air-floating structure
  • 中文刊名:WHZC
  • 英文刊名:Ship & Ocean Engineering
  • 机构:天津大学水利工程仿真与安全国家重点实验室;天津大学滨海土木工程结构与安全教育部重点实验室;天津大学建筑工程学院;
  • 出版日期:2016-06-25
  • 出版单位:船海工程
  • 年:2016
  • 期:v.45;No.233
  • 基金:国家自然科学基金(51379142,51309179)
  • 语种:中文;
  • 页:WHZC201603032
  • 页数:6
  • CN:03
  • ISSN:42-1645/U
  • 分类号:145-150
摘要
以世界第一台可整体安装的风机结构"CBF-3-150"为对象,通过气浮理论和MOSES软件分析不同分舱形式下大尺度筒型基础的浮稳性参数,认为对大尺度筒型基础进行分舱可以明显提高结构的浮稳性;分舱大小会影响大尺度筒型基础的初稳性高和面积比;在内舱半径相同的条件下,四边形和六边形内舱分舱形式较之于有相同分舱数的圆形内舱分舱更优;对于该大尺度筒型基础结构,建议采用外接圆半径为7.5 m的正六边形分舱形式。
        Taking CBF-3-150,the world's first structure of wind turbines with overall installation for example,the stability parameters of large-scale bucket foundation with different styles of subdivision are studied by the air-floating theory and analytic software MOSES to get the optimal designs of subdivision. It is shown that the floating stability of large-scale bucket foundation can be significantly improved by the subdivision in the bucket; the scale of the subdivision has an impact on the meta-centric height and area ratio K,and under the condition of the radius is the same,the amplitude of quadrilateral and hexagonal subdivision are greater than that of round subdivision which have the same subdivisions. The proposed style of subdivision of this largescaled bucket foundation is regular hexagon,the circumscribe radius of which is 7. 5m.
引文
[1]BARARI A,IBSEN L B.Undrained response of bucket foundations to moment loading[J].Applied ocean research,2012,36:12-21.
    [2]KIM S R.Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay[J].Ocean engineering,2012,52:75-82.
    [3]YUN G J,MACONOCHIE A,OLIPHANT J,et al.Undrained capacity of surface footings subjected to combined VHT loading[C].The Nineteenth International Offshore and Polar Engineering Conference.International Society of Offshore and Polar Engineers,2009.
    [4]别社安,时钟民.气浮结构的静浮态分析[J].中国港湾建设,2000(6):18-23.
    [5]沈国光,项伟征.关于气浮筒群结构的静稳性[J].海洋工程,2002,20(1):80-83.
    [6]丁红岩,黄旭,张浦阳,等.筒型基础平台气浮拖航的影响因素分析[J].工程力学,2012,29(10):193-198.
    [7]丁红岩,刘建辉.筒型基础海洋平台拖航研究-波浪影响分析[J].船舶力学,2009(1):19-26.
    [8]张浦阳,丁红岩,乐丛欢,等.海上风电大尺度复合筒型基础拖航特性分析[J].东南大学学报(英文版),2013,29(3):300-304.
    [9]范庆来,栾茂田.VHT荷载空间内海上风机桶形基础破坏包络面特性分析[J].土木工程学报,2010,43(4):113-118.
    [10]乐丛欢,丁红岩,张浦阳.分舱板对海上风机混凝土筒型基础承载模式的影响[J].工程力学,2013,30(4):429-434.
    [11]别社安,任增金,李增志.结构气浮的力学特性研究[J].应用力学学报,2004,21(1):68-71.
    [12]练继建,陈飞,杨旭,等.海上风机复合筒型基础负压沉放调平[J].天津大学学报(自然科学与工程技术版),2014,47(11):987-993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700