人工湿地3种植物凋落物分解及其对水位降低的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Decomposition of three plant litter types in the constructed wetland and its response to water table draw-down
  • 作者:周文昌 ; 史玉虎 ; 潘磊 ; 郑兰英 ; 庞宏东
  • 英文作者:ZHOU Wenchang;SHI Yuhu;PAN Lei;ZHENG Lanying;PANG Hongdong;Hubei Academy of Forestry;
  • 关键词:人工湿地 ; 凋落物分解 ; 气候变暖 ; 滨岸带
  • 英文关键词:constructed wetland;;litter decomposition;;warming climate;;lakeshore zone
  • 中文刊名:HZSZ
  • 英文刊名:Journal of Central China Normal University(Natural Sciences)
  • 机构:湖北省林业科学研究院;
  • 出版日期:2019-04-12
  • 出版单位:华中师范大学学报(自然科学版)
  • 年:2019
  • 期:v.53;No.184
  • 基金:联合国开发计划署—全球环境基金项目(201501-1.2.1);; 湖北洪湖湿地生态系统国家定位观测研究站运行补助项目(2018-LYPT-DW-060)
  • 语种:中文;
  • 页:HZSZ201902012
  • 页数:6
  • CN:02
  • ISSN:42-1178/N
  • 分类号:83-88
摘要
为了解人工湿地种植的3种植物凋落物分解特征,采用网袋法,通过1a的凋落物分解实验,研究了人工湿地3种植物(美人蕉、狭叶香蒲和梭鱼草)凋落物储量、凋落物分解动态及其对水位降低的响应.结果表明:美人蕉、狭叶香蒲和梭鱼草3种植物凋落物储量分别为1 887.83、1 073.25、2 358.86g·m-2;分解1a后,3种凋落物年分解率各自为63.5%、46.5%、61.1%,且它们之间存在差异显著(p<0.05).通过Olson经典指数模型拟合的3种凋落物分解方程,表明了美人蕉凋落物分解速率最高(k=0.063),其次为梭鱼草(k=0.047),最小为狭叶香蒲(k=0.032);湿地植物立枯期间,模拟3种植物美人蕉、狭叶香蒲、梭鱼草的枯落物(叶)在立枯期间的分解速率比枯落物死亡后放置地表的分解速率各自减少6.9%、8.6%和6.9%.人工湿地岸带,水位降低,美人蕉、狭叶香蒲、梭鱼草3种植物凋落物的分解速率分别较水淹条件下增加了33.8%、42.5%和69.6%.这些结果表明气候变暖,可能降低湿地岸带水位,进而增强湿地碳释放.
        To understand the decomposition of three plants litter types in constructed wetland,the litter decomposition was studied by using the mesh bag method during one year.The storage,decomposition dynamics,and its response to water table drawdown from three plants litter types(Canna indica,Typha angustifolia,and Pontederia cordata)were investigated in the constructed wetland in suburban Wuhan City.This results showed that the litter storage of the Canna indica,Typha angustifolia,and Pontederia cordata were 1 887.83,1 073.25,and 2 358.86 g· m-2,respectively.During one year,there were significantly different in decomposition rate among three litter types(p<0.05),and their decomposition rate were 63.5% for Canna indica,46.5%for Typha angustifolia,and 61.1% for Pontederiacordata,respectively.In addition,the Olson classical exponential model showed that the litter decomposition rate of Canna indica(k=0.063)was highest,followed by Pontederia cordata(k=0.047),and Typha angustifolia(k=0.032).During standing litter,the leaf decomposition rate in the constructed wetland was 6.9%,8.6%,and 6.9% lower than that on the surface,for Canna indica,Typha angustifolia,and Pontederia cordata,respectively.With the water table draw-down,the litter decomposition rate from the Canna indica,Typha angustifolia,and Pontederia cordata have increased in the shore zone of wetlands by 33.8%,42.5% and 69.6% compared with that in flooding zone,respectively.These results suggested that the warming climate might decrease the water table in the shore zone of wetlands,and then increase the carbon emission of the wetlands.
引文
[1]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1534-1544.PENG S L,LIU Q.The dynamics of forest litter and its responses to global warming[J].Acta Ecologgica Sinica,2002,22(9):1534-1544.(Ch).
    [2]徐振锋,尹华军,赵春章,等.陆地生态系统凋落物分解对全球气候变暖的响应[J].植物生态学报,2009,33(6):1208-1219.XU Z F,YIN H J,ZHAO C Z,et al.A review of responses of litter decomposition in terrestrial ecosystems to global warming[J].Chinese Journal of Plant Ecology,2009,33(6):1208-1219.(Ch).
    [3]RAICH J W,SCHLESINGER W H.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Tellus B,1992,44(2):81-99.
    [4]STRACK M,WADDINGTON J M,TURETSKY M,et al.Northern peatlands,greenhouse gas exchange and climate change[M]//STRACK M(ed).Peatlands and Climate Change.Jyvskyl:International Peat Society,2008.
    [5]LAWRENCE B A,ZEDLER JB.Carbon storage by Carex stricta Tussocks:a restorable ecosystem service?[J].Wetlands,2013,33(3):483-493.
    [6]关阅章,刘安田,仲启铖,等.滨海围垦湿地芦苇凋落物分解对模拟增温的响应[J].华东师范大学学报(自然科学版),2013(5):27-34.GUAN Y Z,LIU A T,ZHONG Q C,et al.Responses of decomposition of Phragmites australis litter to simulated temperature enhancement in the reclaimed coastal wetland[J].Journal of East China Normal University(Natural Science),2013(5):27-34.(Ch).
    [7]郭绪虎,田昆,肖德荣,等.滇西北高原纳帕海湿地湖滨带优势植物凋落物分解特征研究[J].生态科学,2013,32(2):200-205.GUO X H,TIAN K,XIAO D R,et al.A study on lakeside dominant plants litter decomposition characteristics in Napahai plateau wetland in northwest Yunnan[J].Ecological Science,2013,32(2):200-205.(Ch).
    [8]仝川,刘白贵.不同水淹环境下河口感潮湿地枯落物分解及营养动态[J].地理研究,2009,28(1):118-128.TONG C,LIU B G.Litter decomposition and nutrient dynamics in different tidal water submergence environments of estuarine tidal wetland[J].Geographical Research,2009,28(1):118-128.(Ch).
    [9]陈晓艺,徐德福,李映雪,等.三种水生植物枯落物分解特征与人工湿地渗透系数[J].湿地科学,2017,15(5):740-746.CHEN X Y,XU D F,LI Y X,et al.Characteristics of litter decomposition of 3kinds of aquatic plants and permeability coefficient of constructed wetland[J].Wetland Science,2017,15(5):740-746.(Ch).
    [10]李新华,刘景双,杨继松.三江平原小叶章湿地枯落物在不同水位梯度上的分解及硫素释放动态[J].中国科学院大学学报,2007,24(1):59-65.LI X H,LIU J S,YANG J S.Decomposition and sulfur release of Deyeuxia angustifolia litter along a water level gradient in Sanjiang Plain[J].Journal of the Graduate School of the Chinese Academy of Sciences,2007,24(1):59-65.(Ch).
    [11]OLSON J S.Energy storage and the balance of producers and decomposers in ecological systems[J].Ecology,1963,44(2):322-331.
    [12]孙志高,刘景双.湿地枯落物分解及其对全球变化的响应[J].生态学报,2007,27(4):1606-1618.SUN Z,LIU J S.Development in study of wetland litter decomposition and its responses to global change[J].Acta Ecologgica Sinica,2007,27(4):1606-1618.(Ch).
    [13]马瑞,马维伟,李广,等.尕海湿地不同植被退化阶段凋落物分解及其有机碳动态[J].水土保持研究,2017,24(6):29-34.MA R,MA W W,LI G,et al.Litter decomposition and dynamics of organic carbon in degraded vegetation of Gahai Wetland[J].Research of Soil and Water Conservation,2017,24(6):29-34.(Ch).
    [14]武海涛,吕宪国,杨青.湿地草本植物枯落物分解的影响因素[J].生态学杂志,2006,25(11):1405-1411.WU H T,LYU X G,YANG Q.Factous affecting litter decomposition of wetland herbaceous macrophytes[J].Chinese Journal of Ecology,2006,25(11):1405-1411.(Ch).
    [15]王新源,赵学勇,李玉霖,等.环境因素对干旱半干旱区凋落物分解的影响研究进展[J].应用生态学报,2013,24(11):3300-3310.WANG X Y,ZHAO X Y,LI Y L,et al.Effects of environmental factors on litter decomposition in arid and semi-arid regions:a review[J].Chinese Journal of Applied Ecology,2013,24(11):3300-3310.(Ch).
    [16]张新厚,宫超.湿地挺水植物凋落物立枯分解研究进展[J].生态环境学报,2013,22(4):712-717.ZHANG X H,GONG C.Research advances in standing litter decomposition of emergent macrophyte in wetlands[J].Ecology and Environmental Sciences,2013,22(4):712-717.(Ch).
    [17]COTRUFO M F,INESON P.Effects of enhanced atmospheric CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula pendula Roth.and Picea sitchensis(Bong.)Carr[J].Plant and Soil,1995,170(2):267-277.
    [18]LIAO C Z,LUO Y Q,FANG C M,et al.Litter pool sizes,decomposition,and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary[J].Oecologia,2008,156(3):589-600.
    [19]CAI X M.Ecosystem Ecology[M].Bejing:Science Press,2000:223-234.
    [20]GARCIA-PAUSAS J,CASALS P,ROMANY J.Litter decomposition and faunal activity in Mediterranean forest soils:effects of N content and the moss layer[J].Soil Biology and Biochemistry,2004,36:989-997.
    [21]周文昌,崔丽娟,王义飞,等.若尔盖高原退化湿地土壤有机碳储量[J].水土保持研究,2017,24(5):27-32.ZHOU W C,CUI L J,WANG Y F,et al.Soil organic carbon storage in the degraded wetlands in Zoigêplateau[J].Research of Soil and Water Conservation,2017,24(5):27-32.(Ch).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700